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Abstract

Prudent water management in Australian vineyards has become increasingly important in light of current
energy market prices, potential oversupply of grapes and wine leading to low farmgate prices paid for grapes,
as well as inefficiencies in ageing irrigation infrastructure in many vineyards. Increasing the efficiency of
irrigation water use to maximise yield and/or quality is one strategy to address some of these issues, and can
be done by precise monitoring of soil and vine moisture levels, and applying irrigation based on cultivar-
specific thresholds relevant to each metric based on phenological stage. We evaluated the benefits associated
with implementing irrigation schedules on Cabernet Sauvignon (CAS) and Shiraz (SHI) grapevines in
Coonawarra based on non-data-driven (CONV) and data-driven metrics including crop evapotranspiration
(ET.), soil moisture thresholds (SWS), and two plant-based water status thresholds (PWS/PWS1, PWS2). SWS
and PWS strategies were informed by remote monitoring of the respective parameters using continuous
moisture sensors. Our results indicated that using data-driven approaches was generally superior to non-data-
driven methods, and that water use efficiency (WUE=yield/irrigation) could be enhanced, particularly when
using metrics that were associated with the vine itself, i.e. ET. and PWS. Despite inter-annual variations in the
results that were attributed to weather conditions, we observed 3- to 6-fold increases in WUE based on data-
driven methods compared to the conventional (non-data driven) method in CAS, and a doubling of WUE in
SHI. Comparing various irrigation schedules, PWS1, based on proximal thermal sensors, had the highest WUE
in SHI during the final season, while ET had the highest WUE in CAS in the same season. The PWS group
consistently outperformed the conventional group every season. Despite reductions in irrigation in the data-
driven treatments, no significant impacts to yield or grape composition parameters were observed. High
resolution remote sensing was utilised to generate spatial and temporal information of all three vineyard
blocks; this data was used to develop predictive models of soil and vine water status, gas exchange, and crop
coefficients. Financial (cost-benefit) analysis revealed that the economic water productivity (gross margin
S per ML of water applied) for CAS was 4-fold higher in the ET and PWS treatments, and CONV was highest in
SHI due to the high yields obtained in the final season. Finally, an irrigation practices survey conducted in 2021
across the Limestone Coast region revealed that over 70% of growers used experience or historical schedules
to irrigate, and only 6% of growers used plant-based sensors to inform their irrigation decisions. The greatest
barriers to adoption of new technology for irrigation decision-making were a lack of understanding of their
value and high cost. This study has demonstrated the potential of several direct, proximal and remote
irrigation sensors and tools to determine irrigation schedules in order to increase water use efficiency in
grapevine through precision irrigation.
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1 Executive summary

The overarching objective of this project was to assess the value of plant-sensor based precision irrigation on
grapevine performance, water use efficiency, and grape and wine composition of Cabernet Sauvignon (CAS)
and Shiraz (SHI) grapevines. The project was conducted in the Coonawarra viticultural region of South Australia.
In the first three seasons, five irrigation strategies were investigated: conventional or grower-driven approach
(CONV), 2x CONV for “well-watered” vines (CONV+), and three data-driven (sensor-based) irrigation strategies:
vine water status based on proximal thermal sensors (PWS/PWS1), soil water status (SWS), and crop
evapotranspiration (ET.). In the fourth season (2021/2022), an additional plant sensor-based irrigation
strategy based on continuous measurement of trunk water potential (PWS2) was also evaluated. Additionally,
UAV-based remote sensing was used to obtain high resolution (vine-level) estimates of grapevine crop
coefficients, soil and water status, and canopy gas exchange.

For measuring plant performance and water status, various instruments for direct, proximal and remote
sensing were used at key phenological stages of grapevine development. The evidence- or sensor-based
irrigation strategies had a clear advantage of saving irrigation water in CAS and SHI grown in Terrarossa soil
and Rendzina soils (SHI in Terrarossa only). For instance, in 2020/2021 season (S3) in CAS (in lighter Terrarossa
soil), ET- and PWS-treated vines received only 38% and 67% of the total irrigation of CONV+ treated vines.
However, despite significantly lower soil and plant water status, ET- and PWS-treated vines showed similar
net carbon assimilation (Ayn), stomatal conductance (gs), leaf intrinsic water use efficiency (WUE)), yield, and
berry anthocyanin and phenolics concentrations relative to CONV+ vines. Reduction of irrigation by 38% in
SWS treatments led to significant reductions of soil and plant water status, gs and Ay however, vines
maintained similar WUE; relative to CONV+ treatment. The reduction of irrigation did not result in a yield
penalty, nor reduced berry and juice composition in the CAS vines on Terrarossa soils.

In the 2020/2021 season in CAS on heavier Rendzina soils, sensor-based irrigation reduced water supply by
30-40% relative to CONV+. Despite significantly lower plant water status and gs, all vines maintained similar
WUE; to CONV+. ET and PWS treatments did not result in yield penalties, a positive result, however, yield was
significantly reduced in the SWS treatment relative to CONV+ vines.

In SHI grapevines on Terrarossa soils, plant sensor-based irrigation (PWS) reduced irrigation by 40-60%
compared to CONV+ treated vines. Even though, reduced water supply significantly reduced plant water status
and leaf gas exchange, PWS1, PWS2 and SWS treatments significantly improved WUE; relative to CONV+ vines
during 2021/2022 season, without yield penalties or decreases in berry/juice composition parameters.

Overall, our results suggest that both ET- and plant sensor-based irrigation scheduling are superior approaches
for high-quality grape/wine production for CAS, while the plant sensor-based irrigation scheduling approach
is superior in SHI in order to increase water use efficiency without yield or quality penalties.

Using high-resolution (UAV-based) thermal and multispectral remote sensing in conjunction with machine
learning modelling, we obtained spatial (vine-level) and temporal (phenology-specific) information on soil
moisture (Wyq) and vine physiological parameters (Ws, An, gs, WUE;, K;) for the entire vineyard block and beyond
the trial sub-block. These predictive models can aid practitioners in implementing precision irrigation, i.e.
irrigating blocks at the sub-block level, based on water requirements as determined by the various sensors
such as those evaluated in this project. The spatial maps can also be used to inform the placement of proximal
or direct plant and soil sensors for improved decision-making at the sub-block level.

Financial analysis of the various data-driven options (PWS, SWS, ET) versus the non-data driven-option
(CONV/CONV+) indicated that there was a strong dependence of gross margin and payback period on yield
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and/or irrigation application rates. Hence, the ET (in CAS and SHI) and PWS (in SHI) treatments had the highest
financial returns to the grower based on lower water application rates as yields were similar across the
different strategies. These differences would be even higher, if growers had to pay for water, increasing the
impetus for using sensors to inform irrigation decisions.

The project has successfully met the objectives and delivered:
= acomprehensive evaluation of various irrigation scheduling methods available to grape growers that are

based on subjective and objective assessments. Vine performance and fruit/wine level assessments were
carried out for each irrigation regime.

= an evaluation of two new commercial crop water status sensors and determination of their thresholds to
increase water use efficiency.

= a new high-resolution remote sensing platform for assessment of canopy performance, and spatial and
temporal prediction of the same parameters.

= afinancial analysis of the different irrigation scheduling strategies evaluated in this study.
= acomprehensive industry survey of current irrigation practices in the Limestone Coast.

= knowledge dissemination to the industry via seminars and scientific papers.
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2 Background

Several strategies exist to mitigate against the negative impact of increasing temperatures and decreasing
rainfall including soil management, irrigation, use of undervine and interrow cover crops (Santos et al., 2020,
Marks et al. 2022), canopy management practices (Santos et al., 2020), vineyard cooling strategies (Bayer et
al., 2017; Pagay 2018), and use of heat- and drought-tolerant cultivars and rootstocks (Fraga et al. 2012). In
semi-arid regions such as the Murray-Darling Basin, supplemental irrigation (i.e. irrigation in excess of rainfall;
henceforth termed ‘irrigation’) is not only essential, but a powerful tool to manipulate canopy development
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Volumetric water content) thresholds; and, iv) plant water status thresholds. A number of review papers have

been published that describe each of these approaches in detail; see, for example, Jones, 2004; Cifre et al.,
2005, Jones, 2007; Williams, 2017, Fernandez, 2017, Rienth and Scholasch, 2019, Mirds-Avalos and Araujo,
2021.

Irrigation scheduling tools are typically based on the interpretation of soil moisture, with their popularity
ascribed to the well-established relationship between vine physiological parameters and soil water availability
(Centeno et al., 2010). Common methods for soil moisture monitoring generally include a variety of sensors
and probes aimed at measuring either volumetric water content (%VW(C) or soil matric potential (kPa) (Munoz-

7
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Carpena et al., 2004). However, despite their prevalence, an accurate measure of soil moisture is limited by

direct way to measure plant water stress (Shackel, 2011)) There are several techniques for measuring plant

water status as described by Fernandez (2017); however, for the majority of strategies discussed, a degree of
interpretation is required for a given species and cultivar (Collins and Loveys, 2010). In addition, despite being
considered effective and accurate detectors of vine water stress, strategies involving plant water status have
historically lacked commercial applicability (Jones, 2004), and, until only recently, had largely been confined
to the research domain. Presently, only a handful of Australian vineyards utilise plant water status sensors to
determine irrigation schedules, and typically these are vineyards > 100 ha (AWRI, 2019). (rrigation scheduling

water to apply based on the Penman-Monteith energy balance model (Allen et al., 1998). However, this

methodology has limitations depending on the method and data used to calculate reference
evapotranspiration (ETo), in addition to obtaining and using accurate crop coefficients (Gautam et al., 2021).
Although each of the aforementioned strategies has been successfully used to carry out irrigation scheduling,
the efficacy of each of these strategies is dependent on the thresholds used, with the choice of threshold
potentially being influenced by factors such as production goals, cultivar traits, and environmental conditions.

Considering that the effectiveness of commonly used decision metrics for irrigation scheduling can be
impacted by a range of environmental, production, physiological, and operator-driven factors, it is difficult to
compare strategies based on existing research, which has motivated the present work. To the best of our
knowledge, the aforementioned irrigation scheduling strategies have not been directly compared against one
another in a single study in grapevine that also assesses WUE as a primary objective. We therefore conducted
such a study on Cabernet Sauvignon and Shiraz grapevines in the Coonawarra viticultural region of South

Australia between 2018-2022. As part of the study, we assessed a variety of continuous soil moisture and plant
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3 Project Aims

The following aims and deliverables were defined for each of the four seasons, $S1-S4, from 2018 to 2022:

Table 1: Project outputs and activities, 2018-2022

Season

Outputs

Activities

S1-2018/2019

A.

Vineyard blocks identified and setup for
irrigation trial.

Identify trial sites and set up
experiment.

articles, presentation, and conferences.

B. Proximal plant sensors developed and Deploy plant and soil moisture
deployed. Sensors.

C. Identification, purchase, and operation Purchase and tested/used remote
of the UAS-based remote sensing sensing equipment.
platform.

D. Remote, proximal, and direct field data Collect seasonal soil moisture and
collection. vine performance data.

E. Winemaking, juice/wine chemical Conduct juice and wine chemical
composition analysis. analysis.

$2-2019/2020 A. Validation of plant sensor data against a | Plant sensor data collected and
different level of irrigation. validated vs direct plant measures.

B. Data of vine performance against Collect seasonal soil moisture and
conventionally-scheduled irrigation. vine performance data.

C. Economic (cost-benefit) analysis of Economic model development
sensor-driven irrigation vs conventional begun for Cabernet Sauvignon.
irrigation.

D. Present findings of study through Write and publish two papers on
articles, presentation, and conferences. irrigation scheduling.

$3-2020/2021 A. Validation of data on vine performance, | Collect and analyse grape and wine
yield, water use efficiency, grape quality | data.
and wine quality, and comparison of
sensor-driven irrigation vs
conventionally scheduled irrigation Conduct survey of Limestone Coast

B. Validation of industry irrigation practices | wine industry of irrigation
benchmarks. practices.

C. Wireless connectivity of sensors to Cloud | Implement wireless (4G)
based data platforms. connectivity to the Cloud.

S4 -2021/2022 A. Assessment of the impact of sensor- Grape and wine data collection
driven vs conventionally scheduled and analysis.
irrigation on vine performance, yield,
water use efficiency, grape quality and
wine quality of SHI

B. Economic (cost-benefit) analysis of Analyse financials of Shiraz and
sensor-driven irrigation vs conventional Cabernet under different irrigation
irrigation. regimes.

C. Present findings of study through Data dissemination through

industry workshops and
conferences.




4 Materials and methods

4.1 Design of irrigation trials

In 2017/2018, the field trial was conducted at Wynns Coonawarra Estate’s Alex88-East vineyard for Cabernet
Sauvignon (CAS) on Schwarzmann rootstock. A conventional (non-intervention) irrigation treatment was
compared against evapotranspiration (ET)-based, plant status (PWS)-based and soil water status (SWS)-based
treatments. In the 2018/2019 season, the irrigation trials were expanded from the existing 2017/2018 trials
with clear aim to: i) increase statistical power by replication, ii) understand influence of soil type on water
status, and, iii) understand influence of genotype/phenotype on water status. The trial was expanded from
AX88-East to AX88-West and Katnook Estate Homestead Block (Shiraz/Teleki 5C). At Katnook, an additional
Shiraz block, Prodigy, was monitored for benchmarking purposes as this is the highest quality Shiraz (SHI)
vineyard at the estate; no irrigation treatments were applied in this block. In the 2019/2020 and 2020/2021
seasons, irrigation trials were repeated at all three locations. However, based on experience from the
2018/2019 season, the data collection was restricted to two replications (blocks), which was found suitable
for available resources. In the fourth and final season, 2021/2022, due to budgetary constraints and already
having three years of data from the Cabernet block, the trial was conducted only at Katnook (Shiraz) with
additional treatments as mentioned bellow.

4.1.1 Location

|| Alex88_West

: ’ ¥ £ Alex88_East
e Alex8s =

_“'_._;'.’.

[
o
I

Coonawarra

}
‘ 4
v-v—-—__—___

A | o .

Figure 1: The four vineyards in Coonawarra, SA used for this study

The irrigation trials were established at three vineyards: Cabernet Sauvignon/Schwarmann at TWE/Wynns-
Alex88-east (Terrarossa soil), TWE/Wynns-Alex88-west (Rendzina soil), and Accolade/Katnook Estate
Shiraz/Teleki 5C (Homestead Block) (Terrarossa soil). The Prodigy Shiraz vineyard at Katnook (Terrarossa soil)
was observed for benchmarking purpose without any irrigation trial.

Alex88-East (AX88E) and Alex88-West (AX88W) both have CAS planted in the year 1988 with a total area of
17.3 ha. The east side of the vineyard consistently produces higher quality grape/juice in comparison,
predominantly due to the soil type. The soil type in the AX88E is the red porous “TerraRossa” soil with an
underlying bed of limestone rock. Moving towards the west, the soil gradually transforms into a much heavier
and darker clay type called ‘Rendzina’. The water holding capacity and regulation of water through these two

10



soil types result in the different water status of the plant for the same level of irrigation and subsequently, the
final quality of the wine. The setup in AX88E and AX88W helped assess the soil and vine water status of the
CAS blocks with quite different soil types while keeping the rootstock and scion genotypes, and viticulture
practices consistent.

The Katnook vineyard is a younger SHI (on Teleki 5C rootstock) planted in the year 2013 on porous “TerraRossa”
soil type. The Prodigy vineyard is an older SHI block, which consistently produces high-quality wine. Vines
regulate water differently with the age of the plant, thus resulting in different water status in Katnook and
Prodigy for the same irrigation practice. The setup in Katnook and Prodigy will help us understand how the

younger SHI at different irrigation treatment compare to the older high-quality SHI. By understanding the age

4.1.2 Experimental design
All the irrigation trials (Alex88-east, Alex88-west, and Katnook) are set up similarly whereas the Prodigy does
not contain any irrigation trials. The experimental design — Randomised Complete Block -- is as shown in Figure

N

2018-2021 seasons (CAS, SHI)

Block#1 Block#2

Conventional

Soil Water Status (SWS) |
Evapotranspiration (ET)
Plant Water Status (PWS)

Row | Vine->

129

128

127

126

125

124

123

122

121

120

119

118

117

116

115

Figure 2: Experimental designs at Alex88-east, Alex88-west and Katnook.
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2021-2022 season (SHI)

) Block #1 Block #2 ) Block #3 Conventional
Row] 1| 2| 3| 4| 5 6| 7| & 9| 10 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24| 25| 26| 27 Conventional+
129 Soil Water Status (SWS)
123 M MM (M M M M M M MM M Evapotranspiration (ET)
127] Plant Water Status (PWS1)
126 Trunk Water Potential (PWS2)
125
124 M M M |M M MM M M MM M
123
122
121
120 M M M M M M M M M M [M (M
119
118
117]
llﬁl MMM M M M M M M MM M
115]

Figure 3: Experimental designs at Alex88-east, Alex88-west and Katnook.

The experimental design consisted of two blocks with four different treatment types (Conventional, ET, SWS
and PWS). The conventional treatment is where the growers apply as much water they normally do; as such
it was a non-intervention treatment. In the other treatments, SWS, PWS and ET, we scheduled irrigation based
on quantitative (sensor-based) evidence of soil moisture, plant water status, and evapotranspiration,
respectively. Each irrigation treatment in each block was separated by 1-2 buffer vine rows between them. A
single treatment consisted of three rows where only the vines from middle row were measured (marked M in
Figure 2). Thus, each set of measurement vines had buffers between rows and also within the row to ensure
no irrigation overlap between treatments. Except for CONV, all data-driven irrigation treatments used
thresholds before each irrigation cycle to decide whether irrigation should be applied.

In the 2020/2021 growing season, the conventional or grower-driven treatment (CONV) received the double
the amount of irrigation relative to the previous season (CONV+), which represented an extra treatment.
Other treatments SWS, PWS and ET were applied based on the measurement value of soil moisture, canopy
conductance, and crop evapotranspiration (ET), respectively.

In the 2021/2022 season, in addition to the irrigation treatments applied in the previous season, two
treatments (non-altered original grower-driven (CONV) and trunk water potential-based (PWS2)) were also
assessed.

4.2 Scientific equipment and sensors

4.2.1 Direct, proximal, and continuous sensors

This category of sensors includes the sensors located on the ground including continuous measurement
sensors such as weather station, infrared towers (plant-based sensors, PWS1), and soil moisture sensors
(Figure 3).
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Figure 4: Direct, proximal, and continuous sensors used in this study of grapevine irrigation

4.2.1.1 Direct and proximal sensors
Multiple direct/proximal sensors were employed for this experiment. The sensors in this category
“direct/proximal” include the sensors that required manual operation.

4.2.1.1.1 Pressure chamber

The pressure chamber (Figure 3) is used to measure the pre-dawn leaf water potential and mid-day stem
water potential. The pre-dawn measurement is an indication of the total water that is accessible to the plant's
rooting system. This information is reflected in the predawn measurement of the water potential. One
measurement per plant was made using the pressure chamber between 0230-0500 h.

The midday stem water potential shows the water status of the plant when the plant is transpiring at full
potential. For this, a mature leaf per sentinel vine was selected from the shoulder of the vine. The selection
criterion for the leaves was neither too young, nor too mature, from within 1/3-2/3 shoot length, without
obvious disease/discolouration, and from a full sunlit shoot. The selected leaf was bagged in the aluminium
bag, at least 30 minutes before the measurement. The bagging enabled equilibrium of the leaf water potential
to the overall water potential of the shoot. The measurement was carried out between 1100-1400 h.

4.2.1.1.2 Portable photosynthesis system

An infrared gas analyser (IRGA; Figure 3) was used to measure leaf gas exchange of sentinel vines: stomatal
conductance, rate of transpiration, and net photosynthesis rate, among others. These measurements gives an
indication of the plants’ physiological performance in response to the given amount of soil water availability
and environmental conditions. This measurement was carried out on fully sunlit leaves from the same shoot
as the bagged leaf (for stem water potential) using a LI-COR 6400XT infrared gas analyser, between 1100-
1400 h.

4.2.1.1.3 Ceptometer
An Accu-PAR LP-80 ceptometer (Figure 3) was used to measure the canopy light interception. The light
interception measurements included the canopy porosity (T) and the leaf area index (LAI). Canopy porosity
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gives an indication of the amount of light penetrating the canopy reaching the fruits, which is also a good
predictor of anthocyanin in the berries. The LAl is a measure of the number of leaves per square meter of the
area. These measurements were also made at solar noon (1230-1400 h).

4.2.1.1.4 Crop coefficient measurement

A Paso-panel (Figure 3) was custom-built to measure the crop coefficient (K.) of the canopy. The K¢ is a measure
of the canopy size to the vineyard macrostructure such as fractional cover. This crop coefficient, together with
reference evapotranspiration (ETp), is used to estimate crop evapotranspiration (ET.), which is one of the
irrigation strategies (treatments) evaluated in this study. Using an empirical relationship, K. is estimated
indirectly based on the sunlight intercepted by the Paso-panel (a flexible solar panel) when in the full sun vs
when under the canopy (partially shaded). These measurements were also made at solar noon (1230-1400 h).

4.2.1.2 Continuous sensors

The continuous sensors employed in this trial include Transp-IR thermography sensors (Athena Irrigation
Technologies, Adelaide, SA), soil moisture sensors (Teros-12, METER, Pullman, WA, USA), BOM weather
station, and microtensiometers (FloraPulse, USA). These instruments measured data continuously without the
necessity of operators, and the data was accessed remotely through various Cloud-based interfaces.

4.2.1.2.1 Thermography towers

Proximal infrared (IR/thermal) ‘Transp-IR’ (Gen 1) sensors were obtained from Athena Irrigation Technologies
(Adelaide, SA) for continuous measurement of vine water status. Four sensors per vineyard were tested and
deployed in the three trial sites in early January 2020. The sensor platform consists of sensor nodes (Figure
4.a) that are mounted over a wooden post (Figure 4.b), a temperature-humidity sensor for VPD measurement
(Figure 4.c). The sensor nodes collect continuous canopy temperature as well as VPD data and transmit the
data using 4G mobile network to an Amazon Web Services (AWS) Cloud platform. Each sensor node acquires
canopy temperature from two vines per node on both sides of the canopy, as well as in-canopy temperature
and humidity for the estimation of ambient VPD. The sensor data is collected every 10 min and a daily value
of vine water index (VWI), a thermal water stress indicator, was provided as a measure of vine water
status/stress. The data visualisation and download occurred through a web-based interface (dashboard).
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Figure 5: ‘Transp-IR’ continuous water status sensors (Athena IR-Tech, Adelaide, SA).
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Figure 5: Dashboard providing data visualisation of Transp-IR sensor data. The Vine Water Index (VWI) is shown graphically as a
coloured scale bar on the top of the dashboard. Individual sensor data is shown below the scale bar along with canopy temperature,
ambient temperature, relative humidity, and solar radiation.

Continuous measurements of canopy temperature and VPD were used to derive an index of water stress, Vine
Water Index (VWI).
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4.2.1.2.2 Soil moisture sensors
In addition to the surrogate soil moisture, the pre-dawn leaf water potential measurement or matric potential,
actual soil volumetric water content was measured using a network of soil moisture sensors. These sensors

4.2.1.2.3 Weather station

Daily meteorological data was acquired from the Bureau of Meteorology local weather station (Coonawarra
Station ID: 94817) that was in proximity to the field (approximately 1 km south of the CAS block and 5 km
north of the SHI block). The meteorological data included the daily minimum and maximum temperatures,
minimum and maximum humidity, total solar radiation, and precipitation. This data, together with the K. was
used to compute ET..

4.2.1.2.4 Microtensiometers

Microtensiometers (Figure 6) were embedded into the trunk of SHI and CAS grapevines as described by Pagay
et al., (2021). The data of trunk water potential was obtained every 20 min wirelessly transmitted to a Cloud-
based server (Amazon Web Services, USA) and visually displayed on a user interface (FloraPulse, Davis, CA,

Figure 6: Novel direct plant microtensiometers (FloraPulse) used during 2020/21 season for measuring trunk water potential

4.2.2 Remote sensing equipment

4.2.2.1 The unmanned aerial vehicle

A DJI Matrice 600 Pro hexacopter was used as the sensor carrier for this research. This UAV offered a flight
time of about 16-20 mins and payload capacity of about 6 kg, easily accommaodating the sensor payload which
included a thermal, a multispectral, and an RGB camera (see Figure 7).
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Figure 7: The UAV platform and the sensors for the remote sensing of vine water status.

The flight planning and data capturing strategy were determined before the field campaign. The flights took
place at a height of 30 m in a regular mapping (“lawnmower”) flight pattern. The camera was programmed to
capture images once every second (maximum frame rate). The speed of the flight (3 m/s) was set to match
with the image capture rate such that at least 80% forward overlap between subsequent images were
achieved. The separation of the subsequent flight strips was set such that over 70% side overlap was achieved.
With 80%, forward and 70% side overlap, the images were expected to produce high resolution maps via
mosaicking (photogrammetry). Furthermore, consideration was provided to the total flight time (14 min
battery life) balancing out with the flight altitude. For higher flight altitudes, the UAV could fly faster without
compromise in the image overlap and complete the mission in a shorter time. The selected parameter was a
compromise between the desired overlap, the maximum operating rate of the camera, the life of the battery
and the size of the site. The flight planning and the flight operation was performed in the DJI Ground Station
Pro software application (Fig. 8).

Figure 8: DJI GS Pro software to plan the UAV flight and capturing of the remote data.

The use of independent cameras (thermal, multispectral, and RGB) requires spatial overlay between the
output products (e.g. maps) such that correct plants are observed in each map. For this, we use two-step
17



processing to acquire maps with correct geographic location and with correctly overlayed layers. The first step
is to use a GNSS antenna onboard the UAV that can provide a spatial reference to each image of at least one
camera. The GNSS antenna of the multispectral camera was capable of geotagging the multispectral images.
As a result, the products from the multispectral images were in a correct geographic location. The images were
acquired in WGS84 coordinate frame, and the post-processed products were derived in MGA54 projected
coordinate frame. The second step set in the field was to have permanent control points on the field. For this,
we hammered about 15 wooden pegs (sized 35 x 5 x 5 cm) on each of the test sites, and manufactured ground
targets (sized 30 cm diameter). The ground targets were placed at the peg location, for each of our field
campaigns. This way, the targets are captured by all the cameras, and hence are used as tie-points to align
and overlay the maps from the cameras.

4.2.2.2 RGBcamera

A full-frame RGB camera (Sony a7RIIl) was used to capture the high-resolution natural colour images from the
UAV. The camera had a wide field of view of 65.3° x 46.4°, the focal length of 28 mm and the CCD chip had
7952 x 5304 pixels. Given the camera parameters, the proposed flying height resulted in a single image
coverage of 38.5 x 25.7 m with a spatial resolution of 0.5 cm (at 30 m altitude). This level of spatial resolution
was adequate to capture single leaves at high resolution, and for our application, which requires measurement
at a single vine canopy level.

Figure 9: Typical single RGB image captured from a UAV. Note that leaf-level spatial resolution is achievable.
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4.2.2.3  Multispectral camera

A five-band multispectral camera (MicaSense RedEdge-M) was used to co-capture the multispectral images.
The five discrete bands captured five independent images at blue (475 nm), green (560 nm), red (670 nm), red
edge (720 nm), and near infrared (840 nm) region of the electromagnetic spectrum. The camera had a field of
view of 47.9° x 36.9°, focal length of 5.4 mm, and each discrete CCD chip had 1280 x 960 pixels. The resulting

image for the proposed flying height had coverage of 26.7 x 20 m with a spatial resolution of 2.1 cm (at 30 m
altitude).

Figure 10: A typical single multispectral image. Note that the camera captures a discrete image for each discrete band.

4.2.2.4 Thermal camera

Thermal images were captured using a FLIR Tau2 640 core with TeAx acquisition board. The sensor captured,
at 7.5 — 14 um, the latent heat coming to the sensor from the scene. The camera had the field of view of 45.4°
x 37°, the focal length of 13 mm, and contained 640 x 520 microbolometers arranged as pixels. The resulting
thermal image for the proposed flying height had coverage of 25.1 x 20.1 m with a spatial resolution of 3.9 cm.
The achievable resolution is sufficient for our application to measure a single canopy. At 3.9 cm resolution, a

single canopy will still have several hundred pixels allowing accurate measurement of the pure canopy
temperature.

Figure 11: Typical single thermal image. Note the thermal image requires image-stretching techniques for visualisation purpose. The
raw thermal image appears completely dark to human eyes.
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4.2.3 Thresholds for irrigation scheduling

The four irrigation strategies used measurement of different factors to drive the irrigation. The strategies
resulted in different total irrigation volumes (per season) as well as different times or schedules of irrigation
each week. The decision to irrigate was based on historical (CONV, CONV+), measured (SWS, PWS) or
calculated (ET) information. A set of thresholds based on quantitative measurement values were set for each
of the non-control treatment. For each irrigation cycle, the measurements are compared against the
predetermined threshold. Treatments were irrigated only, if the quantitative measurements dropped below
the predetermined threshold (see below for details).

4.2.3.1 Conventional

The CONV irrigation treatment is the ‘control’ group of this study, which was irrigated by the growers without
intervention by the trial researchers. The irrigation amount and timing incorporated a combination of
historical irrigation schedules, weather conditions, visual inspection of the vines and occasional soil moisture
measurements. In the 2020-21 growing season, due to the high levels of water stress observed in the CONV
vines during the previous season (2019-20), the amount of irrigation was doubled for the CONV irrigation
treatment (CONV+) to ensure the vines were well-watered. In the 2021/2022 season, both CONV and CONV+
treatments were compared with other sensor-driven treatments.

4.2.3.2  Plant water status

The PWS treatment received irrigation based on the measurement of plant water status specifically the VWI
value derived from the Transp-IR towers. These VWI values corresponded to canopy conductance (gc) values
of between 120-140 mmol H,0/m?/s. This threshold range was established from a preliminary study at the
trial site during the 2017-2018 season targeted at achieving 80-85% of maximum photosynthesis of each
cultivar.

4.2.3.3  Crop evapotranspiration

The crop evapotranspiration method aimed to replace the water loss from the vineyard via the evaporation
and transpiration. Based on the measurement of the plant crop coefficient (K.) and meteorological data (ETo),
the ET. was computed weekly. This computation was the basis of the irrigation decision for each irrigation
cycle. Following deficit irrigation strategies in literature and experience from the region and specific vineyard
where 40-50% ET. was used for the CONV treatment, we maintained the deficit irrigation for the ET treatment
at 15% ET. from fruit set to véraison, and 25% ET.from véraison to harvest.

4.2.3.4  Soil water status

The SWS treatment aimed to maintain the soil volumetric water content throughout the season. This threshold
was determined from the capacitance probe historical data. The threshold was set at 30% below the historical
volumetric water content of the vineyards, which was around 33% VWC. The resulting volumetric water
content threshold to trigger the irrigation in the SWS treatment was 21% in both vineyards, CAS and SHI.

4.3 Data collection time points

We aimed to acquire direct, proximal and remote sensing field data at key phenological stages of vine
development. The purpose of the data was two-fold: a) to decide on the irrigation of the particular treatments,
and b) to monitor the performance of the vine as a result of the different irrigation practices. Table 2 shows
the data collection time points corresponding to different phenological stages at each season for CAS and SHI.
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Table 2: Data collection time points at different phenological stages at each season.

Phenological 2018 - 2019 2019 - 2020 2020 - 2021 2021-2022
stage of growth
Winter rainfall 334.2 272.6 272.5 256.6

May-August, mm

Cabernet Sauvignon

EL stage
Budburst (BB) — 4
Flowering (F)- 19
Fruit set (FS)- 27
Pea sized (P)- 31
Veraison (V)- 35
Preharvest (PH)—
37

Harvest (H)- 38

BB —2nd Oct 2018
F —20% Nov 2018

FS—12th Dec 2018
P— 16th Jan 2019

V —12th Feb 2019
PH — 7th Mar 2019
H—11th Apr 2019

BB — 24th Sept
2019

F— 18" Nov 2019
FS —17th Dec 2019
P —13th Jan 2020
V — 5th Feb 2020
PH — 10th Mar
2020

H — 8th Apr 2020

BB — 21st Sept 2020
F — 20t Nov 2020
FS — 7th Dec 2020

P —4th Jan 2021

V —9th Feb 2021
PH — 18th Mar
2021

H — 14th Apr 2021

Shiraz

BB — 30th Sept
2018

F — 5th Dec 2018
FS —12th Dec 2018
P —27th Dec 2019
V —5th Feb 2019
PH — 7th Mar 2019
H —21st Mar 2019

BB — 30th Sept
2019

F —7th Dec 2019
FS — 19th Dec 2019
P —30th Dec 2020
V —10th Feb 2020
PH —9th Mar 2020
H—17th Apr 2020

BB —17th Sept
2020

F — 20th Nov 2020
FS — 7th Dec 2020
P —14th Dec 2021
V —2nd Feb 2021
PH— 1st Mar 2021
H —31st Mar 2021

F- 30" Nov 2021
P- 30t Jan 2022
V- 22" Feb 2022
PH- 18t Mar 2022
H- 06t Apr 2022

4.4 Methodology and processing
4.4.1 Ground data methodology and processing

All the ground data was sorted by date, treatment, block and vine number. A pre-established empirical
equation was used for the computation of crop coefficient. Data was statistically analysed by two-way ANOVA
using GraphPad Prism 8 Prism software.

4.4.2 Harvest, yield components, and pruning

At harvest, yield parameters such as weight of fifty berries, number of clusters per vine, total bunch weight
and cordon length were measured on eight vines per treatment. Vines were pruned later in the season and
pruning weight was measured in each vine.

4.4.3 Winemaking

After harvesting, clusters were randomly selected from eight different vines per treatment and they were
mixed for winemaking. Twelve small-scale ferments (one 5 L ferment per treatment per vineyard) were
prepared according to the following procedure developed by the University of Adelaide. Fruits were crushed
using a mechanical crusher de-stemmer and 20 ml of a 2% SO; solution was added. Diammonium phosphate
was added at 100 ppm to each must before inoculating with the yeast (Lalvin EC-1118 Saccharomyces
cerevisiae bayanus, Lallemand, Denmark) at 300 mg/L. All ferments were incubated in a temperature-
controlled room at 22 °C and skins were hand-plunged twice a day. After two weeks juice was extracted using
a basket press and wines were racked after a week. Malolactic fermentation was initiated by inoculating the



wine with lactic acid bacteria (strain). Wines were bottled after adding sulphur dioxide (30 ppm) and they
were stored at 15 °C until chemical composition analyses was performed.

4.4.4 Berry, juice and wine chemical analyses
All fruit chemical analyses were done on per vine basis. The following chemical parameters were determined
as described below.

4.4.4.1  pH/titratable acidity (TA) and total soluble solids (TSS)
TSS was measured using a refractometer. pH and TA were simultaneously assessed using an autotitrator
(Mettler Toledo T50).

4.4.4.2 Colour/hue analysis

In order to identify colour and hue of grape juice and wine, absorbance at 420 and 520 nm wavelengths were
measured against a blank using a UV/Vis spectrophotometer. A glucose solution (20%) with 1 g tartaric acid
was used as a blank for grape juice, whereas 10% ethanol was used for wine. Colour density and hue/tint were
calculated using the following formulae:

Colour density = Aszo + A4z
Hue/Tint = Asz0/As20

4.4.4.3  Total anthocyanin

Anthocyanin content was determined by measuring the differential absorbance at 520 nm between wines at
pH 1.0 and pH 4.5. Ten-fold diluted samples were prepared using pH 1.0 and pH 4.5 buffers and absorbance
at 420 and 520 nm were measured following a 1 hr of dark incubation. Total anthocyanin concentration was
calculated as malvidin chloride 3, 5-diglucoside (equivalents) using the following formula.

Total anthocyanins (mg/L) = (A% 1.0 — A>*%445) X 255.75

4.4.4.4 Total phenolics

Two microliters of the sample (or 20 pl of the 10:1 diluted sample), 1.58 ml of distilled water and 100 pl of
Folin & Ciocalteu’s phenol reagent were added to a glass cuvette and after 1 min incubation at room
temperature, 300 pl of sodium carbonate solution was added. The solution was incubated at 40 °C for 30 min
under dark and absorbance was measured at 765 nm against a blank. Total phenolics were then quantified
using a Gallic acid standard curve and expressed in mg/L of gallic acid equivalents (GAE).

4.4.5 Remote sensing data methodology and processing

4.4.5.1 Mosaicking

Three cameras (multispectral, thermal, and RGB) were used to co-acquire aerial imagery of the vineyards at
four phenological stages (Flowering (EL-19), PeaSize (EL-31), Veraison (EL-35), and Pre-harvest (EL-37)).
Initially, the photogrammetric software, Agisoft Metashape, was used to mosaic the series of images to create
a map.

The RGB images were mosaicked using a standard workflow of image alignment followed by camera
calibration, dense point cloud generation, 3D model generation, and orthomosaic generation. The output from
the RGB images include orthomosaic and report for each orthomosaic. Since the bands presented in the RGB
are a subset of the multispectral camera, the multispectral products sufficed our necessity and hence the RGB
products were not used in further processing.

The Multispectral images were mosaicked using the workflow recommended by the Agisoft Metashape. The
workflow includes in following order: a) creating multi-spectral images, b) image alignment, c) camera
calibration, d) dense point cloud, e) classification of pointcloud, f) DEM generation, g) DSM generation, and h)



orthomosaic generation. The multispectral camera generated most of the basic products for this project. The
output from a multispectral camera included 12 sets of the following products: a) georeferenced orthomosaic,
b) digital elevation model, c) digital surface model, d) 3D pointcloud, e) processing report.

The thermal camera was new to the processing chain requiring a unique workflow. Firstly, the thermal camera
in *. TMZ format was converted to raw image files. Using a batch processing script the *.TMZ file captured by
the camera were converted to raw *.TIFF file along with the metadata encoded in a *.CSV file. The image files
were then processed in Agisoft Metashape to generate thermal maps. The thermal images contained value of
temperature data encoded in 14-bit format. As the variation in temperature between the scenes was not
minimal, thermal images appeared completely dark when viewed in raw. This resulted in minimum, at best,
match points between the consecutive images, failing image alignment. As a solution, raster transformation
was applied before processing the images in Agisoft Metashape and reverted before exporting products out
of Metashape. The processing workflow of the thermal images in Agisoft Metahshape included: a) raster
transformation, b) image alignment, c) camera calibration, d) dense point cloud generation, e) 3D model
generation, f) orthomosaic generation, g) reset of raster transformation, h) exporting of products. The
products from the thermal images included the orthomosaic and processing report.

The orthomosaic, DEM, and DSM from the multispectral camera and the thermal orthomosaic were processed
further within the scope of this project. Whereas, the processing of the RGB orthomosaic and multispectral
3D pointcloud were considered of low priority.

4.4.5.2 Georeferencing

The multispectral camera had a functional GPS antenna encoding a navigation-grade position to each of the
images. This information is exploited to georeference the multispectral images within the Agisoft Metashape
via direct georeferencing, whereby, all the products from the multispectral camera were in projected MGA 54
projected coordinate frame.

The thermal orthomosaics were not georeferenced to any coordinate frame, due to the lack of functional GPS
antenna. In this process of georeferencing, the thermal orthomosaic were georeferenced on top of the
multispectral orthomosaic. For this, the GCPs spread across the scene were used as the common tie-points
between two orthomosaics. Using a polynomial fit, the thermal orthomosaics were fitted to the multispectral
orthomosaics in ArcGIS software.

4.4.5.3 Atmospheric radiometric correction

The thermal and multispectral images were captured at various time point throughout the season. As each
time point was environmentally different, we required a calibration to account for changing environmental
conditions between different days and times of the day. This calibration corrects for environmental factors
such as high/low solar illumination and VPD, and highlights the plants spectral/thermal signal. For this, four
shaded standard calibration panels were used in the field for each of the flight. The calibration panels were
sized (45 x 45 cm) such that they are visible and had sufficient pixels (over 50) representing a single panel. The
calibration panels were manufactured using black enamel paint and white BaSO, following a prescribed mixing
ratio, coating thickness, and number of coats. The panels were expected to have a uniform reflectance profile
sustained throughout the season. The manufactured panels were four shade of grey: a white (90% white and
10% black), light grey (70% white and 30% black), dark grey (30% white and 70% black) and black (10% white
and 90% black) (see Figure 5). For spectral calibration, the panel reference spectra were measured, at the start
and the end of the season, on the ground using an ASD Handheld2 spectroradiometer. On each flight, the
multispectral camera captured few snaps of the panels. Using the reference spectral profile (measured on the
ground), the calibration was applied to the raw spectral profile (acquired during flight).
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Figure 6: The four calibration panels: White (90% white, 10% black), Light Grey (70% white, 30% black), Dark Grey (30% white, 70%
black), Black (10% white, 90% black) along with the Spectralon panels (calibrated and non-calibrated), and the ASD handheld2
spectroradiometer used to acquire the spectral calibration data. The reflectance profile of the four calibration panels is displayed in

the right pane.

The shaded panel also develops unique temperature when placed under the sun. This was exploited to
calibrate the thermal camera using the same calibration panels prepared for the multispectral. The panels
were placed in the field, under full sun, at least 45 minutes before the flight. By about 45 minutes, each panel
reached a unique and stable temperature. For a typical day, the observed difference between the white and
black panel was in the order of 30° C. During the flight, the thermal camera captured several images of the
panels whenever the panels were in the field of view. Concurrently, on the ground, the panel temperature
was measured continuously using a high accuracy Fluke IR temperature gun. Using the known panel
temperature (measured on the ground), the calibration was applied to the raw thermal data (acquire during

flight).

4.4.5.4  Single canopy data extraction
Following the radiometric/atmospheric calibration of the georeferenced orthomosaics, single canopy level

data was extracted. For this, a global mask was applied to the orthomosaics. The mask incorporated the
normalised difference vegetation index (NDVI) and the canopy height thresholds to remove any non-canopy

pixels from the orthomosaic (see Figure ).
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Figure 13: The masked multispectral (left pane) and thermal (right pane) orthomosaics from Alex88-east at EL-35. Note the masking

is performed using the NDVI threshold (0.4) and the canopy height threshold (1 m).

From the masked multispectral and thermal orthomosaic, single canopy (vine-level) data was extracted by
using the ArcGIS/QGIS Zonal Statistics tool. For zonal statistics to be applied, the vines within the scene were
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digitised using a grid (in Q-GIS) where one polygon represented the vine space (row x vine spacing) for a single
canopy (see Figure ).
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Figure 14: The digitised canopy space for the Katnook Homestead block at EL-31. Note each of the rectangular polygons represents
the vine space for a single canopy. The gap between two polygons is used as inter-canopy 20 cm buffer.

4.4.5.5 Identification of key indices

Numerous structural, spectral, thermal, and composite indices were computed from the remote sensing data.
These indices were, at a later stage, used for spatial prediction of grapevine ecophysiology including stomatal
conductance, net photosynthesis, predawn and stem water potentials, crop coefficient, and LAI.

4.4.55.1 Structural indices
From the single vine data, the following structural properties of each canopy were extracted and structural
indices computed (see Table ):

Table 3: Structural properties and indices computed using remote sensing

SN | Name Description Formula
1 p_height Mean height of the canopy n/a
2 area The top surface area of the canopy | n/a
3 width Width of the canopy n/a
P_fraction | Fractional cover of the canopy area/(rowSpacing*vineSpacing)
within the vine space

4.455.2 Spectral indices
Various spectral indices were computed using the five bands of the multispectral images (see Table 4).

Table 4: The spectral indices computed using the MicaSense RedEdge-M. Note b = Blue, g = Green, r = Red, nir = near-infrared, re =
RedEdge.

SN | Name Description Formula

1 CAR Chlorophyll absorption ((re-b)*r+r+(g-((re-b)*r)*g))/np.sqrt(((re-
ratio b)*r)**2)

2 CAR1 Chlorophyll absorption CAR*re/r
ration#1

3 Gl Greenness index g/r
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4 GNDVI Green normalised (nir-g)/(nir+g)
difference vegetation
index

5 NDVI Normalised difference (nir-r)/(nir+r)
vegetation index

6 MCARI Modified chlorophyll ((re-r)-0.2*(re-g))*(re/r)
absorption in reflectance

7 MCARI1 Modified chlorophyll 1.2*(2.5*(nir-r)-1.3*(nir-g))
absorption in
reflectance#1

8 MCARI2 Modified chlorophyll MCARI1/np.sqrt((2*nir+1)**2-6*(nir-5*r)-0.5)
absorption in
reflectance#2

9 MSAVI Modified soil adjusted (1/2)*(2*nir+1-np.sgrt((2*nir+1)**2-8*(nir-r)))
vegetation index

10 | OSAVI Optimised soil adjusted (1+0.16)*(nir-r)/(nir+r+0.16)
vegetation index

11 | SRI Simple ratio index nir/g

12 | MSR Modified simple ratio ((nir/r)-1)/(np.sqrt((nir/r)+1))

13 | MTVI Modified triangular 1.2*(1.2*(nir-g)-2.5*(r-g))
vegetation index

14 | PCD Plant canopy density nir/r

15 | PRI Photo-chemical reflective | (g-b)/(g+b)
index

16 | RDVI Renormalised difference (nir-r)/np.sqrt(nir+r)
vegetation index

17 | TCARI Transformed chlorophyll 3*((re-r)-0.2*(re-g)*(re/r))
absorption reflectance
index

18 | TCARI/OSAVI TCARI/OSAVI

19 | vDVI Visible-band difference (2*g-r-b)/(2*g+r+b)
vegetation index

20 | ENDVI#1 Enhanced normalised ((nir+g)-2*b)/(nir+g+2*b)
difference vegetation
index#1

21 | ENDVI#2 Enhanced normalised ((nir+g)-2*r)/(nir+g+2*r)
difference vegetation
index#2

22 | ENDVI#3 Enhanced normalised ((nir+g)-r-b)/(nir+g+r+b)
difference vegetation
index#3

4.4553 Thermalindices
Various thermal indices were computed using the five bands of the multispectral images (see Table ).

Table 5: The indices computed using the thermal data.

SN | Name | Description Formula
1 Tc Mean temperature of the canopy n/a
2 Tc/Ta Canopy to atmospheric temperature ratio | Tc/Ta




3 Tc-Ta Canopy to the atmosphere temperature Tc-Ta
difference
4 CWsI Crop water stress index (Tc-Twet)/(Tdry-Twet)
5 ig Crop water stress index (Tdry-Tc)/(Tc-Twet)
6 i3 Crop water stress index (Tc-Twet)/(Tdry-Tc)

44554 Composite indices
Various thermal indices were computed using the five bands of the multispectral images (see Table 6).

Table 6: The composite indices computed using the thermal, spectral, and structural indices.

SN | Name Description Formula

1 cum_ndvi | Cumulative NDVI for entire canopy NDVI*area

2 TVDI Temperature vegetation dryness index Tc/NDVI

3 TVDI#1 Temperature vegetation dryness index#1 | (Tc-Ta)/NDVI
4 TVDI#2 Temperature vegetation dryness index#2 | CWSI/NDVI
5 TVDI#3 Temperature vegetation dryness index#3 | ig/NDVI

6 TVDI#4 Temperature vegetation dryness index#4 | i3/NDVI

4.4.6 Financial Analysis

The following economic parameters were calculated for the last 3 seasons (2018-2021): Economic Productivity
(EP), Economic Water Productivity (EWP), unit production cost, total operational cost, income, cash flow, Net
Present Value (NPV), Internal Rate of Return (IRR), Pay-back Period (PB) and total margin.

EP - Gross margin ($)
"~ Total yield (t)

Gross margin ($)

EWP =
Total irrigation water (ML)

Total operational costs ($)
BP = ;
Total yield (t)

Discounted cash flow analysis (DCFA) was undertaken in order to investigate each irrigation strategy based on
estimated future farm returns to calculated the net present value (NPV):

NPV = —k + zn: CFn
B £ 1+

See the attached paper in the Appendix for details on these financial parameters as well as model assumptions.

4.4.7 Vineyard Irrigation Survey

A survey was conducted to understand the irrigation practices of grapevine growers in the Limestone Coast
viticultural regions. This survey was launched on the 14" of June, 2021 and closed on the 23" of August, 2021.
Growers were asked about their current operation, irrigation practices, use of data to inform irrigation
scheduling, and awareness of water status sensors and their value.
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5 Results and discussion
5.1 Seasonalirrigation

Table 7 shows the total irrigation, in ML/ha, supplied to all irrigation treatments across the three vineyards.

Table 7: Total irrigation (ML/ha) supplied across the three vineyards during each season.

AX88-E AX88-W Katnook

Season | S1 S2 S3 S1 S2 S3 S1 S2 S3 S4

CONV | 0.6 0.55 0.55 0.45 0.46 0.35 - 0.936 1.2 0.72
CONV+ | - - 1.01 - - 0.7 - - 2.39 1.43
ET 0.3 0.4 0.21 0.14 0.34 0.21 - 0.672 0.5 0.57
PWS1 | 0.3 0.44 0.37 0.14 0.31 0.25 - 0.672 0.54 0.42
PWS2 | - - - - - - - - - 0.62
SWS 0.6 0.34 0.34 0.45 0.37 0.25 - 0.552 0.53 0.59

As shown in Table 8, the evidence-based strategies reduced the amount of irrigation applied significantly
relative to conventional treatment.

Table 8: Irrigation supplied as a percentage of CONV treatment across the three vineyards during each season.

AX88-E AX88-W Katnook
Season | S1 S2 S3 S1 S2 S3 S1 S2 S3 S4
ET 50 73 38 31 74 60 - 72 42 79
PWS1 | 50 80 67 31 67 71 - 72 45 58
PWS2 | - - - - - - - - - 86
SWS - 62 62 100 80 71 - 59 44 82

5.2 Soil moisture and vine performance measured via proximal sensing

5.2.1 Seasonal soil moisture
Soil moisture content significantly varied across three different vineyards and between vines irrigated
according to different sensor-driven schedules.

2018/2019 season

In both Alex88-East and Alex88-West, no statistically significant differences were observed in W,4 between
irrigation treatments at the pre-veraison stage. However, during post-veraison stage, W,q was significantly
lower in both ET and PWS vines relative to CONV (Figure 19). In Alex88-east, percentage of volumetric water
content (%VWC) of ET vines were slightly higher that CONV vines throughout the season, whereas PWS vines
exhibited lower VWC relative to CONV. In contrast, both ET and PWS vines exhibited lower VWC compared to
CONV vines. The SHI vines in Prodigy vineyard had consistently higher soil moisture levels compared to the
treatment block (Fig 19e).
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Figure 19: Variations in predawn water potential (W,q) (0, ¢, e) and percentage of volumetric water content (%VWC) (b, d, f) in CAS
and SHI in response to different irrigation treatments. Values are means + SEM of 4 biological replicates. Statistical analysis was
conducted using two-way ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison
stages. Lowercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
Uppercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.

2019/2020 season

Similar to the previous season, no statistically significant differences were observed in W4 between irrigation
treatments in both Alex88-east and Katnook vines before veraison. After veraison, W,q was significantly higher
in ET, PWS and SWSvines in Alex88-east relative to CONV vines. However, any irrigation treatment in Katnook,
did not cause any differences in W,q4 after veraison. Even though, PWS and SWS vines in Alex88-west exhibited
similar Wpqyto CONV vines before and after veraison, their Wyq was significantly lower throughout the season
relative to ET vines (Figure 20). The soil moisture levels in the Prodigy block were similar to the treatment

block.
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Figure 20: Variations in predawn water potential (Wpq) (a0, ¢, e) and percentage of volumetric water content (%VWC) (b, d, f) in CAS
and SHI in response to different irrigation treatments. Values are means + SEM of 8 biological replicates. Statistical analysis was
conducted using two-way ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison
stages. Lowercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
Uppercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.

2020/2021 Season

In Alex88-east, Wyq was similar in ET and SWS vines relative to CONV vines before the veraison, whereas PWS
vines showed significantly lower Wyq The post-veraison Wpqin PWS and SWS was similar to CONV, but ET vines
displayed significantly lower Wyqcompared to CONV. In Alex88-west, PWS and SWS vines had significantly lower
pre-verasion Wyq values relative to CONV, but after veraison, Wyq was significantly lower in ET and sws
treatments compared to CONV. In SHI in Katnook, pre-veraison W4 did not change in response to different
irrigation treatments, however, W4 in ET, PWS and SWS vines after veraison were markedly lower relative to
CONV (Figure 21).
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Figure 21: Variations in predawn water potential (W,q) (a0, ¢, e) and percentage of volumetric water content (%VWC) (b, d, f) in CAS
and SHI in response to different irrigation treatments. Values are means + SEM of 8 biological replicates. Statistical analysis was
conducted using two-way ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison
stages. Lowercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
Uppercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.

2021/2022 Season

Unlike previous seasons, different irrigation treatments caused significant variations in W,qin SHI. For instance,
before and after veraison, W,q was significantly lower in ET, PWS1, PWS2 and SWS vines relative to CONV,
CONV+ and Prodigy vines (Figure 22). The Prodigy block had consistently higher soil moisture levels compared
to the treatment block.
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Figure 22: Variations in predawn water potential (W,4) (0, ¢, e) and percentage of volumetric water content (%VWC) (b, d, f) in SHI in
response to different irrigation treatments. Values are means + SEM of 8 biological replicates. Statistical analysis was conducted
using two-way ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages.
Lowercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
Uppercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.

5.2.2 Seasonal light interception and vine vigour (Leaf area index and porosity)

In Alex88-East and Alex88-West, no statistically significant differences in LAl and porosity were observed
between irrigation treatments both at pre- and post-veraison stages across three seasons (2018/2019,
2019/2020 and 2020/2021). Even though it was consistently observed across three seasons that the LAl and
porosity in SHI at Katnook were similar between irrigation treatments both before and after veraison (except
in 2020/2021 season), Prodigy vines always produced relatively smaller canopy sizes and higher porosity levels

(Figure 23, 24, 25 and 26). The high porosity in Prodigy may have been a contributing factor to the high grape
composition and quality in that block.
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Figure 23: Changes in Leaf Area Index (LAl) (a, c, e) and porosity (b, d, f) in CAS and SHI in response to different irrigation treatments.
Values are means + SEM of 8 biological replicates. Statistical analysis was conducted using two-way ANOVA. Asterisks indicate
statistically significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters indicate statistically significant
differences (P<0.05) between irrigation treatments at pre-veraison stage. Uppercase letters indicate statistically significant
differences (P<0.05) between irrigation treatments at post-veraison stage.
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Figure 24: Changes in Leaf Area Index (LAl) (a, c, e) and porosity (b, d, f) in CAS and SHI in response to different irrigation treatments.
Values are means + SEM of 8 biological replicates. Statistical analysis was conducted using two-way ANOVA. Asterisks indicate
statistically significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters indicate statistically significant
differences (P<0.05) between irrigation treatments at pre-veraison stage. Uppercase letters indicate statistically significant
differences (P<0.05) between irrigation treatments at post-veraison stage.
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2020/2021 season
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Figure 25: Changes in Leaf Area Index (LAl) (a, ¢, e) and porosity (b, d, f) in CAS and SHI in response to different irrigation treatments.
Values are means + SEM of 8 biological replicates. Statistical analysis was conducted using two-way ANOVA. Asterisks indicate
statistically significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters indicate statistically significant
differences (P<0.05) between irrigation treatments at pre-veraison stage. Uppercase letters indicate statistically significant
differences (P<0.05) between irrigation treatments at post-veraison stage.
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2021/2022 season
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Figure 26: Changes in Leaf Area Index (LAl) (a, ¢, €) and porosity (b, d, f) in SHI in response to different irrigation treatments. Values
are means + SEM of 8 biological replicates. Statistical analysis was conducted using two-way ANOVA. Asterisks indicate statistically
significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters indicate statistically significant differences
(P<0.05) between irrigation treatments at pre-veraison stage. Uppercase letters indicate statistically significant differences (P<0.05)
between irrigation treatments at post-veraison stage.
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5.2.3 Seasonal evapotranspiration (ETo) and crop coefficient (K¢)
Variation in rainfall, evapotranspiration and crop coefficient during each season are shown in Figures 27-30.
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Figure 27: Seasonal Crop Evapotranspiration (ETc) (a, ¢, e) and crop factor (Kc) (b, d) in CAS (a-d) and SHI (e) in response to different
irrigation treatments. Values are means + SEM of 8 biological replicates. Statistical analysis was conducted using two-way ANOVA.
Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters indicate
statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
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Figure 28: Seasonal Crop Evapotranspiration (ETc) (a, c, e) and crop factor (Kc) (b, d) in CAS and SHI in response to different irrigation

treatments.
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Figure 29: Seasonal Crop Evapotranspiration (ETc) (a, c, e) and crop factor (Kc) (b, d) in CAS and SHI in response to different irrigation
treatments.
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Figure 30: Seasonal Crop Evapotranspiration (ETc) (a, c, e) and crop factor (Kc) (b, d) in SHI in response to different irrigation
treatments.
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5.2.4 Seasonal plant water status and stomatal conductance

In both Alex88-East and Alex88-west, plant water status did not significantly change at the pre-verasion stage,
across three seasons from 2018 to 2021, except in 2020/2021 season where PWS and SWS vines showed
significantly lower Wqemrelative to ET vines. However, after veraison, ET and PWS vines exhibited significantly
lower Wem relative to CONV in the 2018/2019 season. Similar reduction of Wgemwas also observed in ET, PWS
and SWS vines in the 2020/2021 season in Alex88-east. In the same season, in Alex88-west, Wgemin ET and
SWS was also significantly lower relative to CONV. In the 2019/2020 season, no statistically significant
differences in Wsemwas detected between irrigation treatments post-veraison in SHI. In the 2020/2021 season,
Wetem Was similar between CONV, PWS and SWS, whereas ET vines displayed significantly lower Wg.em relative
to the Prodigy vines. Interestingly, in the 2021/2022 season, pre-veraison Wg.m did not change in response to
sensor-driven irrigation treatments relative to CONV. However, post-veraison W.em Was significantly higher in
CONV+ and lower in PWS1, PWS2 and SWS compared to CONV.

In the 2018/2019 growing season, PWS-based irrigation scheduling did not change pre-veraison stomatal
conductance (g;) in Alex88-East, however, it was significantly increased in response to ET treatment. After
veraison, gs was markedly declined in both ET and PWS vines relative to CONV. Pre-veraison gs remained
unchanged in all the treated vines in Alex88-east and Alex88-west across the rest of the seasons. However,
after veraison, statistically significant variations were observed in gs in response to different irrigation
treatments. In both 2019/2020 and 2020/2021 seasons, post-veraison gsremained unchanged in response to
different irrigation scheduling in Katnook. However, the Prodigy vines displayed significantly lower g relative
to SHI in Katnook in the 2019/2020 growing season. In the 2021/2022 season, CONV+ and Prodigy vines
exhibited significantly higher pre-veraison g, relative to other treatments. Among all the irrigation treatments,
only PWS1 caused significant reduction in g relative to CONV (Figure 31, 32, 33 and 34).
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Figure 31: Changes in Mid-day stem water potential (Wsem) (a, ¢, €) and stomatal conductance (gs) (b, d, f) in CAS and SHI in response
to different irrigation treatments. Values are means + SEM of 4 biological replicates. Statistical analysis was conducted using two-way
ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters
indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage. Uppercase letters indicate
statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.
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Figure 32: Changes in Mid-day stem water potential (Wsem) (0, ¢, €) and stomatal conductance (gs) (b, d, f) in CAS and SHI in response
to different irrigation treatments. Values are means + SEM of 8 biological replicates. Statistical analysis was conducted using two-way
ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters
indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage. Uppercase letters indicate
statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.
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2020/2021 season
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Figure 33: Changes in Mid-day stem water potential (Wsem) (0, ¢, €) and stomatal conductance (gs) (b, d, f) in CAS and SHI in response
to different irrigation treatments. Values are means + SEM of 8 biological replicates. Statistical analysis was conducted using two-way
ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages. Lowercase letters
indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage. Uppercase letters indicate
statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.
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2021/2022 season
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Figure 34: Variations in mid-day stem water potential (Wstem) and stomatal conductance (gs) in response to different irrigation
treatments. Values are the means + SEM of 8 biological replicates. Asterisk represents the statistically significant differences (p<0.05)
between pre- and post-veraison stages. The lowercase letters on the graph represents the statistically significant differences between
irrigation treatments at pre-veraison stage. The uppercase letters represent the statistically significant differences between irrigation
treatments at post-veraison stage.

5.2.5 Seasonal net photosynthesis and intrinsic water use efficiency

In both Alex88-East and Alex88-West, pre-veraison Ay did not change in response to different irrigation
treatments across four seasons. However, sensor-drive irrigation scheduling considerably changed post-
veraison Ay over different season. For instance, in the 2018/2019 season, CAS vine in the Alex88-east,
significantly reduced post-veraison Ay in response to both ET and PWS treatments. However, in the Alex88-
west, significantly lower post-veraison Ay was observed only with PWs vines. In the 2019/2020 season, post-
veraison Ay was significantly higher in Alex88-east ET, PWS and SWS vines relative to CONV vines. However,
amoung Alex88-west vines, statistically significant differences were observed only between PWS, SWS and
CONV. Intriguingly, in the 2020/2021 season, only SWS vines in both Alex88-east and Alex88-west vineyards
exhibited significantly lower Ay relative to other irrigation treatments.

In 2019/2020 and 2020/2021 seasons, no statistically significant differences were observed in post-veraison
An between different irrigation treatments of SHI vines. However, in the 2019/2020 season, prodigy vines
displayed significantly lower post-veraison Ayrelative to all the other treated SHI vines in the Katnook vineyard.
In contrast, in the 2021/2022 growing season, ET, PWS1, PWS2 and SWS vines exhibited significantly lower
post-veraison Ay relative to both CONV and CONV+. However, their pre-veraison Ay did not change
dramatically in response to different irrigation scheduling.

Pre-veraison WUE;remained unchanged in CAS across all seasons in both Alex88-east and Alex88-west. In the
2018/2019 season, post-veraison WUE; also did not change in the Alex88-east vineyard. However, in both
2018/2019 and 2019/2020 seasons, Alex88-west, post-veraison WUE; was significantly higherin PWS vines
relative to CONV vines. In contrast, in 2019/2020 season, Alex88-east PWS vines displayed dramatic reduction
of WUE;relative to CONV.

In both 2019/2020 and 2020/2021 seasons, different irrigation scheduling strategies did not affect post-
veraison WUE;in SHI vines in Katnook. However, in the 2019/2020 season, all SHI vines displayed significantly
higher WUE; relative to prodigy vines. Interestingly, during 2021/2022 season, both PWS1 and PWS2

treatments significantly up-regulated post-veraison WUE;relative to all the other irrigation treatments (Figure
35, 36, 37 and 38).
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Figure 35: Variations in net carbon assimilation (An) (a, ¢, €) and intrinsic water use efficiency (WUE;) (b, d, f) in CAS and SHI in
response to different irrigation treatments. Values are means + SEM of 4 biological replicates. Statistical analysis was conducted
using two-way ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages.
Lowercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
Uppercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.
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Figure 36: Variations in net carbon assimilation (Ay) (a, ¢, e) and intrinsic water use efficiency (WUE;) (b, d, f) in CAS and SHI in
response to different irrigation treatments. Values are means + SEM of 4 biological replicates. Statistical analysis was conducted
using two-way ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages.
Lowercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
Uppercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.

46



2020/2021 season
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Figure 37: Variations in net carbon assimilation (Ay) (a, ¢, e) and intrinsic water use efficiency (WUE;) (b, d, f) in CAS and SHI in
response to different irrigation treatments. Values are means + SEM of 4 biological replicates. Statistical analysis was conducted
using two-way ANOVA. Asterisks indicate statistically significant differences (P<0.05) between pre- and post-veraison stages.
Lowercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at pre-veraison stage.
Uppercase letters indicate statistically significant differences (P<0.05) between irrigation treatments at post-veraison stage.
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2021/2022 season
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Figure 38: The photosynthetic rate (An; a) and intrinsic water use efficiency (WUE; b) of SHI under different irrigation treatments.
Values are the means + SEM of 8 biological replicates. Asterisk represents the statistically significant differences (p<0.05) between

pre- and post-veraison stages. The uppercase letters represent the statistically significant differences between irrigation treatments
at post-veraison stage.
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5.3 Continuous sensor-based data
Soil moisture

Volumetric water content of the soil, rainfall and irrigation applied during the 2019/2020 and 2020/2021
seasons are shown in the figure below.

(Eture 92020/2021 Volumetric Water Content @ Rainfall @ lrrigation
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Figure 39: Sample soil moisture data from Katnook, Alex88E and Alex88W during 2019/2020 and 2020/2021 seasons on the
GreenBrain dashboard

Soil moisture levels in both vineyards were maintained between 22% (pre-irrigation) and 35% (post-irrigation),
where the lower end of the range represented an approx. 30% reduction in historical seasonal soil moisture
of the AX88 block. Due to the similarity in soil type between the CAS and SHI blocks, the same threshold of 22%
VWC was applied to both as the minimum VWC to trigger an irrigation, done on a weekly basis. In AX88 (CAS),
approx. 4 hours per week of irrigation were applied during the peak summer period starting in late-December
through to harvest around early- to mid-April. This time equated to approx 21 L/vine/week or ~5 mm/week.
In SHI, during the same peak period, 3 weekly irrigations of 3 h each were applied for a total of 9 h of irrigation.
This translated to a water application of 7.2 mm/week or ~35 L/vine/week. The SHI irrigation season would
typically commence earlier than the CAS season owing to differences in phenology, production targets (yield
vs quality), and vine size and age.



Vine Water Index (VWI)

Transp-IR thermal sensors were used to continuously measure canopy temperature, and ambient
temperature and relative humidity to calculate a daily index of plant water stress termed ‘Vine Water Index’
(VWI). This index utilises several timepoints of the day to determine the relevant values for the VWI number
that vary based on environmental conditions (e.g. hot vs cool day), cultivar isohydricity, and soil moisture. A

snapshot of the Transp-IR dashboard is shown in the figure below.
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Figure 39: Transp-IR dashboard during the 2020-21 season in Shiraz grapevines showing the daily VWI value, and 10-min data of

canopy temperatures, ambient temperature, and relative humidity. The dashboard also provides an option to visualise incident solar
radiation.
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Trunk Water Potential (Wirunk)

Microtensiometers were used to continuously measure trunk water potential in CAS and SHI during the
2020/2021, shown in the figure below (sub-figure (c)).
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Figure 40: Trunk water potential of CAS and SHI during the 2020-21 season (c) in response to VPD (a) and volumetric water content (b)

Due to the nature of their continuous measurements of plant (trunk) water potential, microtensiometers can
be used to effectively measure both soil moisture — through the highest Wi.n value at pre-dawn — as well as
vine water status at maximum transpiration rate — the lowest value of Wik on a diurnal basis. As seen above
and reported in detail in Pagay (2022), Wyunk corresponded to both soil moisture availability (VWC) as well as
environmental demand (VPD). Higher VPD days and/or low soil moisture tended to decrease Wk and vice-
versa. It should be noted that use of Wy« for irrigation scheduling needs to develop new thresholds for this
metric rather than using the values reported in the literature for stem or leaf water potentials.
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5.4 Remotely-sensed canopy performance

High resolution remote sensing using unmanned aerial vehicles (UAVs) allowed for the capture of sub-vine
level spectral reflectance data over the growing season. These datasets were used, in conjunction with ground-
based physiological measurements, to model the same physiological measurements across space and time.
We predicted select physiological parameters at key phenological stages; maps were generated for the pre-
harvest period as an example of what predictions are possible with these models.

5.4.1 Correlation analysis

Initial steps in the modelling involved assessing which of the spectral bands were highly correlated with the
ground-based physiological data. Select spectral bands (horizontal axis of matrix below) and physiological
indicators (left vertical column) for CAS indicate high degree of correlation between canopy leaf area as
observed from the UAV and soil and vine water status, and canopy conductance. The thermal wavelengths
were also significantly correlated with the same parameters, as might be expected.

Pre-dawn water potential 05 6605 01 02 05

0.1 04 02 03 0.3
0.003 05 04 02 ﬂ

Area NIR RE H Tc

Stem water potential

Canopy conductance

Figure 7: Correlation analysis of soil and vine water status metrics with UAV-derived thermal, structural, and spectral responses of
CAS grapevines.

5.4.2 High resolution prediction of soil and vine water status

Cabernet Sauvignon
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Figure 42: Spatial and temporal prediction of pre-dawn leaf water potential, an indicator of soil moisture (a), and stem water
potential at midday (b). Single vine level data is presented for the entire mapping area of the AX88E (CAS) vineyard beyond the
sentinel vines at EL-37 (pre-harvest).

Using a model developed through statistical and machine learning methods with high resolution multispectral
and thermal imagery from a low-altitude UAV, we were able to obtain predictions of soil and vine water status
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at the single vine level (Fig. 42). This method is an alternative to spatial interpolation methods such as kriging
that are based on sparse spatial data. The variations in soil moisture across the AX88E block (Fig 42a) were
captured with low MAE (Table 9), particularly with the random forest model, which is an ensemble of models
based on decision trees. From the map, it was obvious that the south end of the block had lower soil moisture
availability, which translated into higher vine water stress (Fig. 42b). This knowledge can help growers
implement precision irrigation whereby that (more stressed) section of the block is zoned via a valve, and
irrigated at a higher level or rate.

Table 9: Accuracy of various linear and non-linear statistical models and machine learning models for the prediction of various CAS
vine components at EL-37 (pre-harvest). RMSE = root mean square error; R? = correlation coefficient; MAE = mean absolute error.
Models: Linear, GLM = Generalised Linear Model, RF = Random Forest.

Pre-dawn leaf water potential (W4, MPa) Midday stem water potential (W, MPa)
Model RMSE R? MAE RMSE R? MAE
Linear 0.150 0.371 0.127 0.265 0.293 0.181
GLM 0.138 0.505 0.102 0.130 0.726 0.108
RF 0.096 0.068 0.068 0.117 0.087 0.087
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Figure 43: Spatial and temporal prediction of pre-dawn leaf water potential, an indicator of soil moisture. Single vine level data is
presented for the entire mapping area of the KAT (SHI) vineyard beyond the sentinel vines at EL-23 (flowering) and EL-35 (véraison).
Flowering (EL-23) Veraison (EL-35) W, (MPa)
U P LR S P oatann 0.45
- s aalie e T el s
aﬁﬁann-w-ﬂunﬂﬂﬂ' -*‘h“ﬁmu———--ﬂﬂv‘
T asan e o Mol g et i g -0.75
st A < - parte ~ W
e g o e P 4 = — apgrevh U
v e s B e e 0
gy A A pueuuif) RO e ————
. ™ g g e g R A o sy e e AR
[ s gt P R e e Bl L e UL L g -1.35
s e B e g A g e e By A
_—npu-ﬂlﬂ-lﬂll-!"‘—--’— o PP =
ey g e e e o R P P L s -1.65
(a)

(b)

Figure 44: Spatial and temporal prediction of midday stem water potential. Single vine level data is presented for the entire mapping
area of the KAT (SHI) vineyard beyond the sentinel vines at EL-23 (flowering) and EL-35 (véraison).

In the Katnook Shiraz block, both predawn leaf and midday stem water potentials were modelled to provide
a spatial (single vine resolution) and temporal (two important phenological stages, flowering and véraison)
prediction of soil and vine water status, respectively. Predawn leaf water potentials (Wpq), which reflect the
available soil moisture to the vines, ranged from -0.1 to -0.4 MPa at flowering, and -0.1 to -0.7 MPa by véraison
(Fig. 43). The extent of spatial variation of soil moisture across the block was not significant as indicated by

the narrow range of Wyq values. By véraison, a significantly higher proportion of vines had access to less soil
moisture, as expected, due to deficit irrigation and greater vine size that use more water.

With regards to midday stem water potentials (Ws), reflecting the vine’s water status, values ranged from -0.5
to -1.3 MPa at flowering, and -0.5 to -1.7 MPa by véraison. There was clearly a central section of the block that
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had lower vine water status (more water stress); this region would be a candidate for increased irrigation
through zoning. The central section also had lower Wy4 values at véraison, perhaps due to shallower soils and
smaller rootzones.

5.4.3 High resolution prediction of vine crop coefficient
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Figure 44: Spatial prediction of crop coefficient (K.) of AX88E (CAS) at pre-harvest. Single vine level data is presented for the entire
mapping area of the vineyard beyond the sentinel vines.

The crop coefficient (K) is an important variable for the calculation of crop evapotranspiration (ET.) for
determining irrigation schedules (i.e. timing and volume of irrigation applications). Here, we predicted the
spatial variation in K. across the AX88E block on a per-vine basis such that precision irrigation could be
implemented in the future (Fig. 44). The spatial pattern of K. appears to be highly variable across the mapped
region, with values ranging from 0.4 through 0.75 at the EL-37 stage, which is a large variation in vine size (leaf
area) and canopy light interception, both of which drive transpiration and vine water use and consequently
determine irrigation rates. Such large variability in the K. suggests that there may be high underlying variation
in the rooting depth of the vines (due to considerable spatial variations in the depth to the impermeable
limestone layer), and/or high variations in vine health, e.g. due to trunk diseases, which are common in the
region.

Table 10: Accuracy of various linear and non-linear statistical models and machine learning models for the prediction of CAS crop
coefficient (K.) at EL-37 (pre-harvest). RMSE = root mean square error; R? = correlation coefficient; MAE = mean absolute error.
Models: Linear, GLM = Generalised Linear Model, GAM = Generalised Additive Model, CNN = Convolution Neural Network, RF =
Random Forest.

Crop coefficient (K.)
Model RMSE R2 MAE
Linear 0.091 0.295 0.076
GLM 0.074 0.528 0.061
GAM 0.069 0.594 0.055
CNN 0.072 0.619 0.060
RF 0.062 0.675 0.047
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The various statistical and machine learning models employed compared quite similarly to one another; the
best predictions were obtained with the RF model (lowest RMSE and MAE values, highest R?). Considering the

low values of MAE for all models tested, even the linear model did well in predicting K. This allows the use of
simple tools and spreadsheets for future prediction of K.

A manuscript was published in the journal Remote Sensing based on this work on K. and is attached to this
report.
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Figure 45: Spatial and temporal prediction of crop coefficient (K.) for KAT Shiraz grapevines at flowering (a) and véraison (b). Single
vine level data is presented for the entire mapping area of the vineyard including and beyond the sentinel vines.

Variations in K. across the Shiraz block during the early season (flowering, EL-23) ranged from 0.35 to 0.55
with a few vines exceeding 0.7. By véraison, most of the vines had K. values exceeding 0.6, with only a few
vines around 0.75, suggesting that canopies were not overly large in terms of leaf area intercepting light. These
single-vine values of K. allow for the delineation of irrigation zones (if adopting the ET strategy) although the

uniformity in this block was relatively high thereby not requiring zoning of irrigation unlike the Alex88 CAS
block, which had much higher spatial variation of K..
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5.4.4 High resolution prediction of canopy gas exchange
Cabernet Sauvignon
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Figure 46: Spatial prediction of canopy conductance, g. (a) and net photosynthesis, A, (b) in AX88E (CAS) at pre-harvest. Values for g,
are shown in mol H,0 m2 s'1; values for A, are shown in umol CO, m2 s, Single vine level data is presented for the entire mapping

area of the vineyard beyond the sentinel vines.

High resolution remote sensing using thermal and multispectral cameras allowed for the modelling of canopy
gas exchange parameters, canopy conductance (g.) and net photosynthesis (A,). Spatial variations in g,
indicate a range of 0.05 — 0.2 mol H,0 m2 s, which reflects the consistently high vine-to-vine variability in
water status and physiological performance in this block. Net photosynthesis rates are also similarly variable;
values range from 5 — 13 pmol CO, m s, These values match the range of values obtained from our ground

measurements with an infrared gas analyser.
Table 11: Accuracy of various linear and non-linear statistical models and machine learning models for the prediction of CAS canopy

gas exchange at EL-37 (pre-harvest). RMSE = root mean square error; R? = correlation coefficient; MAE = mean absolute error.
Models: Linear, GLM = Generalised Linear Model, RF = Random Forest.

Canopy conductance (g.) Canopy net photosynthesis (A,)
Model RMSE R? MAE RMSE R? MAE
Linear 0.059 0.149 0.047 1.497 0.371 1.272
GLM 0.055 0.265 0.042 1.379 0.505 1.015
RF 0.039 0.622 0.030 0.962 0.751 0.681

Comparing the performance of the various models, the Random Forest model again was superior to the other
two evaluated in this study. Values of RMSE and MAE were the lowest for both parameters, g. and A,.

Further work on this dataset would include predictions of spatial and temporal patterns of leaf and crop water
use efficiencies, as well as extending these predictions to other neighbouring vineyards with the same cultivar
based on limited ground-based measurements in those blocks to fine-tune the models developed here.
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Figure 47: Spatial and temporal prediction of canopy conductance, g., in KAT-SHI during flowering (a) and véraison (b). Values for g.
are shown in mmol H,0 m~ s1, Single vine level data is presented for the entire mapping area of the vineyard beyond the sentinel

vines.

Remote sensing-based model predictions of spatial canopy conductance through multispectral and thermal
high-resolution imagery, indicated that, at flowering, g. ranged from 56 to ~200 mmol H,O m=2 s, with no
clear spatial structure in the data (lack of defined zones). By véraison, these values ranged from 56 to 244
mmol H,0 m2 s, with significantly more vines at the higher g values compared to at flowering. At this later
stage, there appeared to be a separation between the central rows (with lower g.) and the sides of the block
(with higher gc), which provide guidance on where to implement precision irrigation through irrigation zoning.
This pattern was consistent with the spatiotemporal trends of both predawn and stem water potentials (Figs.

43, 44), but not K. (Fig. 45).
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Figure 48: Spatial and temporal prediction of canopy net photosynthesis, A,, in KAT-SHI during flowering (a) and véraison (b). Values
for A, are shown in umol CO; m2 s, Single vine level data is presented for the entire mapping area of the vineyard beyond the
sentinel vines.

Canopy net photosynthesis rates predicted at the single vine level via HR-RS indicated a range of 8-12 umol
CO, m? st during flowering, rising to 10-18 umol CO, m? s by véraison. The Shiraz block showed spatial

structure between these two phenological stages; the upper and lower portions of the block had higher
values of P, consistent with g, and soil and vine water status spatial trends.
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Figure 49: Spatial and temporal prediction of leaf intrinsic water use efficiency (WUE; = A,/gs) in KAT-SHI during flowering (a) and

véraison (b). Values for WUE; are shown in umol CO, mmol* H;0. Single vine level data is presented for the entire mapping area of
the vineyard beyond the sentinel vines.

Using the spatial and temporal A, and g, information in Figs. 47-48, the spatial and temporal patterns of leaf
intrinsic water use efficiency (WUE;) were obtained for the Shiraz vineyard during the 2021-22 season (Fig. 49).
During the early season, around flowering, WUE; values ranged from 0.05 to 0.2 across the block, wbile later
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in the season, around véraison, those value shifted higher in the center of the block to around 0.2-0.25. The
two north-south edges of the block clearly had low WUE;; this could be attributed to the larger canopies in
those regions (high Kc values, Fig. 45) using more water due to their relatively higher gs values (Fig. 47) that
was not matched by the increase in A, (Fig. 48). This is another opportunity to implement precision irrigation
by zoning the two ends of the vineyard and applying water at lower rates to decrease the g; relative to A,. The
central rows are clearly quite efficient in their water use patterns, showing high WUE..

5.5 Yield components and pruning weights

As shown in the table 9, total yield per vine did not change dramatically with different irrigation treatments
in both Alex88-east and Alex88-west during 2018/2019 (S1) and 2019/2020 (S2) seasons. However, in the
2020/2021 season, total yield of CONV+ vines was significantly higher relative to SWS vines due to increased
average berry weight. Even though yield per unit length (kg m™) seemed to be constant in Alex88-east during
all three seasons despite of different irrigation scheduling strategy, in Alex88-west CONV vines displayed
significantly higher yield per meter relative to PWS vines in S2.

Table 9: Yield components for all irrigation treatments in Alex88-east and Alex88-west and experimental season (2018/2019,
2019/2020 and 2020/2021). Means (n = 4 — 8) are presented. Interactions between irrigation treatments are reported both within a
soil type and between soil types.

Season | S1 S2 S3 ANOVA
Treat | AX88-  \yggw |AX88 AX8- | \ceE AX88W |T ST S X sxsT
ment E -E W ST
_ CONV |733 7.12 3.85 420 |- -
o PWS |7.19 524 459 3.04 |6.53ab 5.30
C
Ll - - 580 333 |[7.02ab 6.67 o wrr ker s ons
< SWS - - 497 3.10 |4.88b 473
Re
L CONV - - - 871a  7.48
+
CONV |222 228 1.14 1.35a |- -
PWS |2.16 1.38 136 0.81b |1.94 1.60
ET - - 156 96 1.80 1.92
ab * * % * %k * % *
—~ SWS - - 1.51 2589 1.47 1.37
- £
L 2 CONV- - - - 1.91 2.12
= +
CONV |43.4 51.2a 296 327 |- -
- o PWS |413 344D 30.8 253 |422 34.8
c £
2 v ET - - 36.5 228 |[396 39.8 . x o+t s s
o< SWs |- - 39.2 247 | 36.2 35.8
O c
C
23 CONV- - - - 49.2 52.1
= +
- CONV |558 540 405 513 |- -
(8]
$§ PWS |60.1 47.8 46.1 433 |533 44.1 ab . kg
£ o ET - - 449 469 |51.9 49.6 a
@ o SWS - - 412 451 |49.0 41.0b
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SONV - - - - 54.2 45.4 ab
CONV |0.92 0.83 095 084 |- -
% PWS |086 0.85 100 078 |0.88b 0.97
2 ET - - 098 090 |0.85b 0.98
oY)
T SWS |- - 096 082 |0.85b 0.92
; *%k  kkk ns ns * %k %
5
g CONWV - - - 0.98a  1.02
© +
o
>
<<
CONV |51.1 446 383 416 |- -
S PWS [519 407 463 32.6 |468 42.6 ab
2 ET - - 443 420 |445 48538 |+ wxx wex o+
e Sws |- - 39.2 362 [415 37.4b
g g CONV
()
zs . - - - - 53.2 44.3 ab
CONV | 0.66 0.57 0.73 045 |- -
& PWS |067 046 0.84 056 |0.51 0.42
2 ET - - 083 049 |053 0.52 ns EEE kR g ke
-?-:Di SWS | - - 0.86 042 |0.53 0.52
c
£ SONV - - - - 044  0.64
CONV |3.62 4.44 166 3.11a |- -
" PWS [326 3.74 173 1.57b |3.77 3.52
v 231
2L T - - 208 1 3.52 3.92
5 218 ns ns  *** ns  ns
2 sws |- - 190 o 2.84 2.77
o
CONV
& - - - - 462 365
+

It was consistently observed across three seasons that the total yield of SHI in the Prodigy block, was
significantly lower relative to all trial SHI vines at Katnook. For instance, in S1 and S3, PWS1 and SWS vines
showed significantly higher yield relative to Prodigy vines, whereas in the 2021/2022 season, all irrigation
treatments produced significantly higher yield compared to prodigy vines. Yield reduction in Prodigy can be
attributed to significantly lower berries per bunch as well as average bunch weight.



Table 10: Yield components for all irrigation treatments in Katnook during four experimental seasons (2018/2019, 2019/2020,
2020/2021 and 2021/2022). Means (n = 4 — 8) are presented. Prod=Prodigy block. Interactions between irrigation treatments are

reported.

Tx
Season | S1 S2 S3 S4 T S S
CONV | 5.3ab 1.9 ns - 7.5a
CONV - - 99a 8.4a
+ *k o okkk o
ET 5.2 ab 1.3 8.7 ab 6.2 2a
F"g PWS1 59a 2.1 10.4 a 6.2 a
s PWS2 - - - 6.4 a
[o]4]
= SWS 6.0a 1.6 9.7 a 59a
g Prod- 35b - 4.8b 3.0b
> CONV ) ’ ’
CONV | 3.0ns 1.1ns - 4.6 ns
fONV - - 5.7 ns 4.2
ET 3.0 0.74 5.0 35 ns ns ns
PWS1 3.4 1.2 5.9 3.5
PWS2 | - - - 3.6
—~ SWS 3.4 0.94 5.6 3.3
T g R
o5 Prod i i i 34
> = CONV
CONV 18.14 a 17.1ns | - 26.1b
4] CONV- | - 328ns |25b
< +
o * % %k %k *
% ET 5.0b 11.4 36.7 24 b
Q0
- PWS1 59b 17.9 42.4 22.1b
5 Pws2 |- - - 241D
2 SWS |56b 14.3 38.1 23.5b
(8)
c < Prod-
= - - -
a E CONV 42.2 a
CONV 1314 b 442 ns | - 121 a
CONV - - 113.6a 102 a
+ *x%k  kxk *
ET 126 b 49.2 113.6a 109 a
PWS1 124 b 50.1 104.4 a 111 a
PWS2 - - - 115 a
<
e SWS 128 b 49.4 125.7 a 120 a
3
2 prod
rod-
% CONV 194 a - 70.0b 41 b
9]
[aa]
CONV | 1.13ns 1.36ns 1.5 ab
Q
® o CONV 1 . 154a [16a |** ¥
L 5 7
< o T 1.15 1.35 1.20b 1.3 bc
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PWS1 | 1.20 1.37 131b | 14bc
PWS2 | - - - 1.4 be
sws | 1.16 1.33 1.15b |13c¢
Prod-
cony | 11 - - 1.3 be
— _CONV [1480b [59.8ns |- 178 a
g SONV - - 174a | 168ab
D * *kk ok
2 ET 1453b | 64.5 134.6b | 145b
G PWsl |1480b [664 [136.2b |150ab
3  PWS2 |- - - 155 ab
@ Sws [1478b |657 143.9b | 151ab
E Egﬁv 203.4a |- 86.2c |53c
CONV | 0.80ns - 1.0 ns
CONV | ] ]
N
ET 0.91 - 0.84 ns nsns
S pwsi [095 |- 1.10
S _ PwWs2 |- - -
27 sws |081 - 1.00
S QED Prod-
€< conv |- ] ]
CONV |3.9ns - 5.6 ns
CONV | ] ]
E s ns ns ns
ET 3.5 - 6.0
2 Tpwsi |45 - 5.9
3 Tpws2 |- - -
= sws |42 - 5.7
@©
g ZBOSV >-2 i )
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5.6 Water use efficiency

5.6.1 Crop water use efficiency
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Figure 50: Crop water use efficiency (WUEc, t/ML) for the AX88E (CAS), AX88W (CAS) and KAT (SHI) vineyards during the three
seasons. Water application volumes do not include rainfall during the growing season.

Crop water use efficiency (WUE.) metrics derived from yield and irrigation data, also known as Irrigation Water
Productivity, were calculated for each of the three seasons of the trial in the CAS and SHI vineyards. The 2019-
, followed by the

SWS treatment.
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double the WUE; of the CONV group. In the final season, 2021-22, the PWS1 treatment based on the proximal
Versus CONV or the Prodigy block (PROD): The only outlier in this group was the CONV+ treatment, which
received double the CONV irrigation volume, and clearly this did not translate to a proportional yield increase
and thereby decreasing its WUE. (relative to CONV).
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5.6.2 Berry carbon isotopes
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Figure 51: Carbon isotope (613C) analysis of SHI and CAS grape berries. Boxplots show median value (horizontal line inside the box),
minimum and maximum values (lower and upper edges of box), and SE (whiskers).

Carbon isotope analysis was used as an estimate of the seasonal water use efficiency (WUE) of the vines as
there is a high correlation between the 63C value and leaf-level instantaneous WUE (or Transpiration
Efficiency, TE) as reported in several published studies. In AX88E-CAS (on Terrarossa), the highest (least
negative) 8'3C values were found in the data-driven treatments, indicating higher WUE than the CONV in both
seasons. The CAS vines on Rendzina soils (at AX88W) had fewer differences even though the same trend held
in 2021. Amongst the data-driven treatments in CAS-Terrarossa, the PWS and SWS treatments had the highest

5%3C values in the first season.

For SHI grapevines on Terrarossa, ET and PWS had the highest 8'3C values in the first season, with no
differences between the CONV+ and SWS treatments. In the second season, 2021-2022, all the data driven
treatments were significantly higher than the CONV, CONV+ and PROD vines, indicative of their high WUE.
Comparing these data-driven groups, the highest 6§3C values were observed in the SWS, PWS1 and PWS2
treatments, consistent with the WUE; values obtained from leaf gas exchange (Figure 38b).



5.7 Berry and juice composition

It was consistently observed that juice quality of CAS in both Alex88-east and Alex88-west vineyards, did not
significantly vary in response to different irrigation treatments across the first two seasons. However, berry
quality attributes (colour, total phenolics and tannin concentrations) were significantly lower in SWS vines in
the S1 relative to CONV vines.

In the 2020/2021 season in both Alex88-east and Alex88-west, berry quality and most of the juice quality
parameters remained unchanged. However, in Alex88-east, both PWS and SWS vines showed significantly
lower pH and TA relative to CONV+ (Table 11).

Table 11: Variations in berry and juice composition in Alex88-east and Alex88-west during three experimental seasons (2018/2019,
2019/2020 and 2020/2021) in response to different irrigation treatments. Means (n = 4 — 8) are presented. Interactions between
irrigation treatments are reported.

Season S1 S2 S3
Alex88- | Alex88- | Alex88-E | Alex88- | Alex88- | Alex88-
E w w E w
CONV - - 4.2 ns 3.6 ns = -
CONV+ - - - - 6.3 a 4.1 ab
ET - - 4.2 3.7 5.9 ab 4.1 ab
L _Pws - - 4.2 3.5 53bc |50a
S sws - - 4.2 3.1 5.1c 3.8b
CONV - 3.0ns 3.6 ns = -
CONV+ - - - - 6.3 a 4.1 ab
ET - - 3.2 3.7 59 ab 4.4 ab
L _Pws - - 3.3 3.5 53bc |50a
F  SWS - - 2.9 3.1 5.1c 3.8b
CONV - - 25.2 ns 26.32a - -
CONV+ - - - - 26.2ab | 26.8 ns
ET - - 25.5 25.2b 26.0b | 26.9
o«  PWS - - 25.7 257ab |[27.4a |26.7
£ sws - - 25.7 257ab | 27.2a | 269
] CONV 3.5ns 3.5ns 1.8 ab 1.5ns = -
28 conv+ |- - - - 29ns | 2.6ns
§§ ET 3.5 3.4 22a 1.6 2.3 2.6
223 PWS 3.4 3.7 1.8ab | 1.6 23 2.6
8% 2 sws 30 3.7 1.7 b 16 2.2 25
CONV 4.2 a 4.2 ns 1.9ns 1.8 ns = -
££2 CONV+ |- - - - 2.4ns | 2.7ns
SEEET 38ab |38 2.3 1.8 2.4 2.6
5235 Pws 39ab |43 1.8 1.9 2.6 2.7
825 sws 3.2b 4.2 1.9 1.9 2.6 2.8
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Season S1 S2 S3
Alex88- | Alex88- | Alex88-E | Alex88- | Alex88- | Alex88-
E w w E w
5 o CONV 2.5ns 2.5ns 1.8 ns 1.5ns = =
§§ . CONV+ |- - = - 2.0ns 2.2 ns
gzl 2.5 2.4 18 1.7 2.1 23
§§§ PWS 2.4 2.5 1.8 1.6 2.0 2.3
2385 sws 2.2 2.6 1.7 1.6 1.9 2.2
CONV 3.0a 3.0ns 1.9ns 1.8 ns = -
e 8 > CONV+ |- - = - 2.2 ns 2.3ns
553 T 2.7ab |27 1.9 1.8 2.2 2.3
225 pws |28ab |30 18 1.9 2.3 24
f% %;% SWS 24b |29 1.9 2.0 2.5 24
=
£ CONV 8.2ab 7.0 ns 5.3 ns 5.2 ns = -
B § CONV+ |- - - - 59ns | 54ns
£ ET 9.4a 7.2 4.9 5.4 5.2 5.1
; PWS 87ab |86 4.7 5.3 5.4 5.6
© 2 SWS 49b 4.4 4.6 5.5 5.7 5.3
CONV - - 3.9ns 4.4 ns - -
CONV+ - - - - 4.7 ns 4.5 ns
. > ET - - 3.9 4.4 4.7 4.5
é 2 pws - - 38 4.4 4.7 4.7
O T SWS - - 4.2 43 4.8 4.6
CONV - - 1.1ns 1.0ns = -
CONV+ - - - - 1.0 ns 1.0 ns
ET - - 1.1 1.0 1.0 1.0
v PWS - - 1.1 1.0 1.0 1.0
T SWS - - 1.1 1.0 1.0 1.0
CONV - - 176 ab 220 ns - -
g CONV+ |- - - - 400ns | 327ns
§ ET - - 162 b 203 382 310
s23PWS |- i 170ab | 234 409 307
P s £ sws - - 203 a 215 425 310
CONV - - 2.2ns 1.7 ns 3.2ns 1.7 ns
" CONV+ - - - - - -
= 6T - - 1.7 1.8 2.9 2.4
e E PWS - - 2.0 1.7 3.2 1.9
= 2 Sws - - 1.7 1.7 3.8 2.5

In 2018/2019 season, irrigation scheduling did not significantly affect berry anthocyanin, phenolic and tannin
concentrations in SHI in Katnook (Table 12). In the 2019/2020, 2020/2021 and 2021/2022 seasons, juice
quality parameters such as pH, TA, TSS, hue and total phenolics were also did not change in response to
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different irrigation treatments in SHI in Katnook. However, statistically significant differences were observed
between prodigy vines and SHI in Katnook. For instance, in the S4, prodigy vines showed significantly lower
juice quality parameters (pH and TSS) and higher TA and total phenolics relative to SHI vines in Katnook.

Table 12: Variations in berry and juice composition in Katnook during four experimental seasons (2018/2019, 2019/2020, 2020/2021
and 2021/2022) in response to different irrigation treatments. Means (n = 4 — 8) are presented. Interactions between irrigation

treatments are reported.

Season S1 S2 S3 sS4 S TxS
CONV - 4.3 ns - 3.6a
CONV+ - - 3.4 ns 3.6a
ET - 4.3 3.3 3.7a rkEk S *
PWS1 - 4.3 3.4 3.7a
PWS2 - - - 36a
SWS - 4.3 3.3 36a
Prod-
5 CONV - - 3.3 30b
5.3
CONV - 5.5ns 7.0 ns bed
CONV+ | - - - 59b wxx wx
ET - 5.6 7.0 5.1d
PWS1 - 5.6 6.7 5.1d
PWS2 - - - 5.1d
SWS - 5.2 7.0 5.1d
Prod-
,<_f CONV - - 7.4 8.6a
CONV - 27.8 ns - 2553
CONV+ | - - 229a 25.8a
ET - 29.6 20.5b 26.53a rkE Ok
PWS1 - 28.7 20.6 b 26.7 a
PWS2 - - - 26.7 a
SWS - 28.2 20.8ab | 25.9a
3 (P:g)NdV . - 22.5ab | 225b
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Season S1 S2 S3 sS4 S TxS
CONV 4.4 ns 2.3 ns - 3.0ab
CONV+ - - 29a 3.5a
ET 4.9 2.4 23ab | 29b S
= Pwsl |48 2.7 25ab |3.0ab
£ 2 pws2 |- - ] 3.0ab
> g SWS 4.3 2.1 2.0bcd |3.0ab
82
qg. g Prod- ) i 154 )
3£ conv
S5
CONV 3.6 ns 2.0ns - 2.1ns
£e CONV+ |- - 18a 2.1
% ET 4.2 2.1 20a 2.2 * o w
£8 pwsi [40 |21 19a |22
E§o PWS2 |- - - 2.2
gg g sws 3.6 17 18a 2.4
S5 Eg)r\?v ; ; 12b ;
CONV 3.2ns 2.1ns - 2.8 ab
. CONV+ |- - 2.7 a 3.0a
E5 g7 34 23 24abc | 26b wx
5T Pws1 |33 2.3 26ab | 2.7ab
£5 pws2 |- : : 2.7 ab
gé SWS 2.9 2.0 21bc | 26b
s % ¢ Prod-
S22 conv | - 20c -
. CONV 2.7 ns 1.9ab - 1.9ns
53  CONV+ |- - 14ab |19
E€z T 2.9 2.0a 20a |19 r e
8¢ Pwst |28 19ab_[2.0a |20
g2 Pws2 |- ] ] 2.0
§§§ SWS 2.4 1.6b 19ab |20
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Season S1 S2 S3 S4 S TxS
__ CONV  |93ns |- - 517 ns
§ % CONV+ |- - 20ns | 530
g E e 9.2 - 3.2 517 £E
S % PWS1 | 104 |- 3.2 582
S o PWS2 |- ] _ 568
c 2 SWs 106 |- 29 685
€2 Prod-
E S conv | - 3:2 ;
CONV |- 47ns |- 3.3 be
CONV+ | - - 3.7ab |3.0c
ET - 4.8 43a 4.0 ab Krk ok
PWS1 | - 4.8 422 4.0 ab
_ Pws2 |- - - 423
-‘é SWS - 4.6 4.13 3.7 bc
% Prod 3.8
é CONV |~ ) 320 abc
(@]
CONV - 1.0 ns - e
ns
CONV+ - - 1.0 ns 0.75
ET - 1.0 0.96 0.82 wE
PWS1 | - 1.0 0.97 0.82
PWS2 | - ] - 0.86
SWS ] 1.0 0.92 0.70
E Eg)r\?v ; ; 0.95 0.77
CONV | - 2542 ns | - 100.9
-y ns
En CONV+ |- - 162.3 ab | 78.82
= T - 237 2342 | 105.5
= PWSL |- 230 2302 | 89.41 Ahx K
% PWS2 |- - - 76.81
£ Sws - 222 207a |83
,—(: Prod-
g ow |- ; 114b | 69.21
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Season S1 S2 S3 S4 T S TxS
CONV |- 2.5ns - 1.6 b

2 CONV+ - - 0.9 ns 16b

B T - 2.5 1.2 1.6 b

% PWST | - 24 1.1 16b | * *xx =*

< PWS2 |- - - 1.6 b

S sws - 2.2 0.9 1.6b

3 Prod-

S oo |- - 1.1 2.0a

5.8 Wine composition

Table 13: Wine composition of Coonawarra Cabernet Sauvignon from AX88 East and West vineyards under different irrigation
regimes.

Season Treatmentl pH | TA | Colour | Hue |Tota| Anthocyanins (mg/L)l Total Phenolics (g/L)
CONV 4.11 5.35 4.77 1.05 365.47 4.05
2018/2019 ET 4.14 5.60 4.80 1.05 326.21 3.50
PWS 4.07 5.43 4.78 1.05 329.02 2.98
SWS 4.12 5.27 4.79 1.05 279.02 2.77
2 CONV 3.98 6.32 4.94 1.04 378.19 231
8 |2019/2020 ET 3.94 6.90 4.93 1.04 393.54 2.47
3 PWS 3.98 6.60 4.89 1.04 392.45 2.99
< SWS 3.99 6.52 4.91 1.04 396.28 3.16
CONV+ 4.16 5.70 4.81 1.04 308.05 3.54
2020/2021 ET 4.24 5.53 4.81 1.04 291.56 3.84
PWS 4.20 5.56 4.75 1.05 295.90 3.59
SWS 4.30 5.11 4.80 1.04 296.47 4.25
CONV 4.05 531 4.77 1.05 335.54 4.94
2018/2019 ET 4.06 5.10 4.82 1.05 309.84 4.02
PWS 4.03 5.33 4.80 1.05 337.97 4.63
SWS 4.06 5.22 4.82 1.05 309.59 4.13
s CONV 3.95 6.48 4.86 1.04 374.35 3.29
é 2019/2020 ET 3.95 6.67 4.95 1.04 382.77 3.16
3 PWS 3.92 6.37 4.81 1.04 376.78 3.33
< SWS 3.94 6.51 4.77 1.04 397.09 3.34
CONV+ 4.21 5.29 4.83 1.04 322.09 3.75
2020/2021 ET 4.21 5.43 4.74 1.04 283.29 3.76
PWS 4.13 5.34 4.81 1.04 312.91 3.43
SWS 4.21 5.23 4.84 1.04 314.93 4.26

Irrigation scheduling methods did not have a significant effect on basic wine composition parameter, pH and
TA, colour and hue in most years. The total anthocyanins in the wine were lower in the ET treatment in most
years except 2019/20, with no differences between the other groups. Total phenolics were often higher in the
data-driven treatments except in the first season, 2018/19. The higher polyphenolic concentrations were
generally related to the extent of vine water stress in the post-veraison period.
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Table 14: Wine composition of Coonawarra Shiraz from Katnook Estate under different irrigation regimes. In 2018/19 and 2019/20,
the wines were made categorised by three vine water stress levels, LOW, MEDIUM, HIGH.

Season Treatmentl pH | TA | Colour Hue |Tota|Anthocyanins (mg/L)lTotaI Phenolics (g/L)
Low 4.21 4.70 4.78 1.05 354.34 4.13
2018/2019] MEDIUM 4.13 4.79 4.79 1.05 350.51 3.46
HIGH 4.14 4.78 4.77 1.05 339.76 4.63
Low 4.34 7.15 4.84 1.04 367.51 2.40
2019/2020| MEDIUM 4.34 7.04 4.94 1.04 299.74 2.15
o HIGH 4.32 6.94 4.88 1.04 372.50 2.44
S CONV+ 4.17 5.24 4.74 1.05 265.52 1.99
g 2020/2021 ET 3.90 5.47 4.64 1.02 258.54 2.53
PWS 4.08 5.13 4.72 1.03 260.71 1.86
SWS 4.00 5.45 4.69 1.03 256.11 2.18
CONV 4.09 6.30 4.88 1.03 226.90 1.39
2021/2022 ET 4.05 6.08 4.84 1.04 293.15 1.78
PWS 4.08 6.19 4.94 1.04 252.56 1.55
SWS 4.07 6.05 4.87 1.04 308.22 1.65

In Shiraz grapevines, TA, pH, colour and hue were in a narrow range between treatments and did not differ
significantly in any of the seasons. When the wines were grouped based on vine water stress levels in the first
two seasons, the highest anthocyanin levels were observed in the low and high water stress levels, particularly
in the 2019/20 season when the differences were significant. Phenolics followed a similar pattern in those
years. When the different irrigation treatments were applied starting in 2020/21 season, the ET treatment
had higher phenolics in both seasons, but there were few differences in anthocyanins (except for SWS in the
2021/22 season).



5.9 Financial analysis

Investment and operational costs for each irrigation treatment are shown in Table 15.

Table 15: Approximate investment and operational costs for each irrigation scheduling strategy investigated in this study.
Operational costs for the GROW and ET treatments were calculated on a per season basis, whereas PWS and SWS operational costs
were considered over a year as data subscription plans occur in 12-month cycles. Costs were considered for a 15-ha vineyard
considering an 18-week irrigation period.

Initial ] . Yearly
Investment Lifespan Operational .
concept cost (years)  concept operational Benefits
($) cost ($)
Cost of wages
. involved in . .
Experienced . . Minimal equipment
vineyard manager making decisions, requirements and
GROW yaramanager 5 453 19 ongoing 479 red ,
and one soil > interpretation of
. maintenance of
moisture sensor . . complex data
soil moisture
probe
Paso panel and .
P . Ability to
labour required to Cost of wages .
. . numerically
ET establish crop 1,172 10 required to 440 L
calculate irrigation
factor values over calculate ET.
needs
one season
Thermograph
graphy Data subscription Integrates data
towers (thermal
each month, from the whole
camera, gateway, . )
ongoing annual canopy with
PWS waterproof 6,000 5 > 580
maintenance, measurements
outdoor boxes, .
ole. self cost of wages to directly related to
P o analyse data vine transpiration
installation)
Data subscription .
P Well-established
. each month, .
Multiple depth . methodology with
) ongoing .
capacitance probe > a high degree of
maintenance of
SWS (probes, 13,577 10 357 support for

installation cost
and software)

soil moisture
probe, cost of
wages to analyse
data

troubleshooting
equipment and
data problems

The primary assumptions for the implementation of various sensors to obtain data relate to sensor density
(i.e., number of sensors per ha), sensor prices, and lifespan.
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The following financial metrics were calculated for three seasons per cultivar (2018-2021 for CAS; 2019-2022
for SHI):

= Economic Productivity (EP) = Economic Water Productivity (EWP) = Unit production cost
= Total operational cost = Income = Cash flow
= Net Present Value (NPV) = |nternal Rate of Return (IRR) = Pay-back Period (PB)

Total margin

Results are presented in Tables 16-18 in the following pages.



5.9.1 Cabernet Sauvignon — Terrarossa

Table 16: Financial indicators of various non-data and data-driven irrigation scheduling approaches for Cabernet Sauvignon grapevines grown on Terrarossa soil in Coonawarra.

2018/2019 2019/2020 2020/2021
GROW ET PWS SWS GROW ET PWS SWS GROW+ GROW ET PWS SWS
Gross margin
($ha) 20,001 19,925 18,203 20,221 7,635 14,936 9,893 10,775 23,373 a 18,082 ab | 19,040ab | 18,668ab | 10,445b
a
Economic water
productivity 32,764 b 61,914 a 60,774ab | 33,310b 13,032 b 34,613 a 22,311ab | 20,026ab | 18,385c 29,361 bc | 86,353 a 61,549 ab | 29,524 bc
($ ML
Breakeven point
$t1) 1,305 1,337 1,439 1,309 2,313 1,654 1,970 1,976 1,214 a 1,341a 1,400 ab 1,451 ab 1,897 b
t
NPV ($ ha'l) 121,171 120,719 102,000 122,077 -4,622 69,987 17,492 26,003 155,499 101,603 111,708 106,735 22,630

One-way ANOVA and Tukey’s multiple comparison test (a = 0.05) was used to compare treatments

In Terrarossa soils, the gross margin of CAS varied quite significantly from season to season; the anomalous year was 2019-20 where the margin
was half or less of the other two seasons. The highest margins were found for the GROW treatment (GROW+ in the last year), whereas the lowest
values were in the PWS. The EWP was highest in the data-driven treatments, particularly ET and PWS, which was consistent across seasons.
These numbers were high due to the low price (or no cost) of water in Coonawarra; in areas where water prices have to be factored into the
model, the EWP numbers would be considerably lower, particularly in dry years. This numbers are consistent with the NPV — the highest NPVs
are associated with the ET and PWS treatments. In the case where excess irrigation was applied, GROW+, there was a strong yield response
translating to the highest NPV values of the group. To evaluate which of the irrigation strategies were economically feasible, the breakeven point
was determined. The BP values were around $1300-$1500 per tonne of grapes, which reflects the minimum price that has to be received by




growers if selling their crop. Lower BP values were observed in GROW treatment (except in 2019-20) likely due to the low investment costs
associated with the sensor infrastructure. However, this is a scenario specific to Coonawarra where water prices are not a factor, and could be
quite different in areas like the inland regions along the Murray River, where water is a real cost to production and yields are substantially higher
for a given amount of water applied, i.e. higher gains in water use efficiency are expected to decrease the BP relative to GROW/GROW-+. These
strategies may then have very different feasibilities.



5.9.2 Cabernet Sauvignon — Rendzina

Table 17: Financial indicators of various non-data and data-driven irrigation scheduling approaches for Cabernet Sauvignon grapevines grown on Rendzina soil in Coonawarra.

2018/2019 2019/2020 2020/2021
GROW ET PWS SWS GROW ET PWS SWS GROW+ GROW ET PWS SWS
Gross margin
($ha) 19,401 18,922 11,889 22,900 7,705 4,995 4,485 3,542 20,802 18,118 17,645 13,234 9,841
a
Economic water
productivity 43,110 b 119,149a | 70,049ab | 48,511b 16,452 14,934 13,846 9,539 29,387 b 51,108 ab | 81,666a 58,935ab | 39,004 b
($ MLD
Breakeven point
1) 1,375 1,629 1,954 1,200 2,346 3,334 3,483 3,168 1,380 1,336 1,406 2,416 2,176
t
NPV ($ ha') 115,053 110,508 37,774 149,318 -3,884 -38,553 -51,700 -49,992 122,641 101,940 97,522 40,365 16,484

One-way ANOVA and Tukey’s multiple comparison test (a = 0.05) was used to compare treatments

In the heavier Rendzina soils of Coonawarra, CAS gross margins followed a similar trend to the lighter Terrarossa soils— GROW had higher margins
due to the low investment in infrastructure, but this was not linked to EWP or NPV. The returns per unit application of water (EWP) was highest
in the ET treatment, primarily due to the low investment cost associated with obtaining crop coefficients and calculating ET.. The EWP values
were generally higher in Rendzina compared with Terrarossa (except 2019-20), reflecting the marginal benefit of using sensor technology in
vineyards with heavier soils, possibly due to the greater disconnect between water content in the soil and vine water status that drives yield.
The BP values were higher also compared to Terrarossa by nearly $500 per tonne reflecting how critical it is to manage irrigation prudently in
heavier soils that have a higher clay content. While NPV values were generally highest in the GROW/GROW+ treatments, the data-driven
treatments were only slightly lower due to the investment costs associated with the infrastructure as well as slightly lower yields. With water

prices factored in (in other regions), these numbers are likely to tip in favour of the data-driven treatments.




5.9.3 Shiraz — Terrarossa

Table 18: Financial indicators of various non-data and data-driven irrigation scheduling approaches for Shiraz grapevines grown on Terrarossa soil in Coonawarra.

2019/2020 2020/2021 2021/2022
GROW | ET PWS SWS GROW+ | GROW | ET PWS SWS GROW+ | GROW ET PWS1 PWS2 SWS
Gross margin
8 5271 2,610 4,047 2,425 42,154 15,827 | 36,116 44,777 41,522 29,588 31,168 23,228 19,779 24,265 22,887
($ha1) a b ab a a ab a ab b ab ab
Economic
water
5,632 3,885 6,022 4393 21,077 15,827 | 83,992 81,412 86,505 15,096 25,136 21,310 17,199 21,665 24,092
productivity b b a a a b a ab ab ab a
($ ML)
Breakeven
point 3,310 5,026 2,686 2,893 471 a 917b 561b 492 b 490 b 616 ab 576 a 753 ab 842 b 699 ab 749 ab
(€15))
-1 - - - -
NPV ($ ha') 72,524 105,041 | 62,701 | 87,233 359,906 | 85,220 | 297,118 | 386,263 | 351,842 | 228,841 | 226,375 | 162,756 | 125,594 | 129,137 | 157,521

One-way ANOVA and Tukey’s multiple comparison test (a = 0.05) was used to compare treatments

The Shiraz grapevines on Terrarossa soils had similar financial trends to the CAS. The highest gross margins were attained in the GROW treatment while the

lowest were in the data-driven treatments. The benefit of using sensor driven technology was apparent when looking at the EWP: the PWS and ET treatments
were amongst the highest in the group while the GROW/GROW+ were the lowest. The breakeven points for SHI were considerably lower than for CAS although
the trends were the same; the lowest BPs were in the GROW treatment due to the low investment required, while the ET treatment was amongst the lowest
in the data-driven group for the same reasons. The plant sensor-based treatments had the lowest BP and highest NPV of the group, so, in the long term, this
strategy represents a prudent financial decision for SHI.
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5.10 Irrigation Practices Survey

The Limestone Coast irrigation survey was launched on the 14% of July, 2021 and it was closed on the
23" of August, 2021. Thirty-five grapevine growers were participated in the survey. The irrigation
survey and responses are in the Appendix. The survey results were disseminated to the industry in
September 2021 and one random respondent to Part 3 of the survey was selected to win a $100 gift
card. The number of survey respondents was 32.

Aggregated results of the irrigation practices survey data are provided in the Appendix. The highlights
of the survey responses include:

Most organisations surveyed had total vineyard area between 20-500 ha with average yields
between 3-9 t/ha.

Majority (~90%) of vineyards were irrigated using above-ground drip irrigation.
Most (72%) irrigation decisions were made based on historical experience of the block(s).

Most irrigators used weather forecasts to make irrigation decisions; less than 30% of the
respondents used ET to schedule irrigation using historical or published crop coefficients.

Two-thirds of the respondents used soil moisture monitoring; only two growers used plant-
based sensors (sap flow, canopy temperature)

The greatest barriers to adoption of new technology (for irrigation scheduling) was a lack of
understanding of the technology, uncertainty of its value, and high cost.

Approx. half the respondents plan to invest in new or additional irrigation technology within
three years.

6 Other related outputs
Three scientific (peer-reviewed) manuscripts have been published as a part of this project:

Gautam et al. (2021) Estimation of grapevine crop coefficient using a multispectral camera on an
unmanned aerial vehicle. Remote Sensing 13: 2639.

Gautam et al. (2020) A review of current and potential applications of remote sensing to study the
water status of horticultural crops. Agronomy 10: 140.

Pagay, V. (2021) Evaluating a novel microtensiometer for continuous trunk water potential

measurements in field-grown irrigated grapevines. Irrigation Science 40: 45-54.

Two additional papers are in preparation:

Schlank, R. et al. Evaluating different irrigation scheduling strategies in Cabernet Sauvignon
grapevines according to soil type and water use efficiency metrics in a Mediterranean climate.

Schlank, R. et al. Financial analysis of implementing different irrigation scheduling strategies in

premium Cabernet Sauvignon grapevine in a cool climate Australian vineyard.

The findings of this research project were presented or will be presented at the following events.



e Pagay, V. (invited) Innovative technologies for precision irrigation in vineyards. 2021. American
Society for Enology and Viticulture (ASEV) Precision Viticulture Symposium. (22" June, 2021)

e Schlank, R. Evaluating different irrigation scheduling strategies in Cabernet Sauvignon grapevines
according to soil type and water use efficiency metrics in a Mediterranean climate. Crush 2021-
the grape and wine science symposium. Adelaide. 16" June 2021

e Presentations to industry collaborators

0 WA bilateral project updates. Treasury Wine Estates. (27™ August 2021)
0 WA bilateral project updates. Katnook Estate. (1% September 2021)

e ASVO podcast on irrigation strategies in vineyards (31 August, 2021)

e AWRI webinar on optimising irrigation in vineyards (November 2021)

e AWRI Irrigation Roadshows (several in 2022)

e AWITC 2022 Workshop on Water Use Efficiency (oral presentation, 26/06/2022)

e Abstract submitted to the ISHS 10™ International Symposium on Irrigation of Horticultural Crops,
Stellenbosch, South Africa (January-February 2023).

7 Concluding remarks

Irrigation strategies based on data-driven techniques enabled the saving of water whilst not penalising
vine physiological performance, yield, or grape composition. A key finding of this trial was that, in
premium vineyards under deficit irrigation, seasonal irrigation volumes only partly account for
variable yields; irrigation schedules play a vitally important role in this regard, and managing irrigation
based on data, whether soil moisture, plant water status or ET., can greatly benefit water use
efficiency and, importantly, without sacrificing grape/wine quality. We validated two new commercial
crop water status sensors — microtensiometers (Florapulse) and TranspIR (Athena IR-Tech) — as part
of the trial; both were found to strongly correlate with conventional vine water status metrics such as
stem water potential and stomatal conductance. High resolution remote sensing from UAVs was
shown to be valuable for (i) assessing spatial variations in water status and canopy performance; and
(i) developing predictive models of these parameters over space and time. Together, these are
essential for precision irrigation, informing the placement of crop based sensors as well as zoning of
irrigation blocks into sub-blocks. Together, these techniques have the potential to increase water use
efficiency in grapevine and other crops that are similarly irrigated. Our choice of the two vineyards for
Shiraz and Cabernet Sauvignon that were contrasting in their variability highlighted the importance of
understanding spatial variability to improve management practices, including irrigation scheduling.
The use of continuous crop water status sensors provided near real-time (or daily) data to inform the
temporal management of irrigation to achieve greater efficiencies in water management in Australian
vineyards.
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10 Appendix: Limestone Coast Vineyard Irrigation Survey

Industry Experience and Operation

1. What is your age range?

a. 18-25
b. 26-35
c. 36-45
d. 46-55
e. 55+

What is your main occupation in the wine industry? (Please circle all that apply)
a. Grape grower
b. Viticulturist
c. Winemaker (not winery owner)
d. Winery owner

How long have you been involved in the grape and wine sector?
How many of these have you been growing or managing grapes for?

Of these years, how many have been in the Limestone Coast region?
Which region(s) of the Limestone Coast are you based or operating in?

What is the total vineyard size in which you operate? (for all varieties grown in the Limestone
Coast region)

a. <20ha

b. 20-49 ha

c. 50-99 ha

d. 100-500 ha
e. >500 ha

What is a typical annual yield range from your operations? (total tonnes for all red winegrape
varieties grown in the Limestone Coast region)

Do you typically dry farm or irrigate your grapevines?
a. lrrigated
b. Rainfed/dry grown

If you irrigate, how do you deliver irrigation? (circle all relevant)
a. Above ground drip irrigation

Subsurface drip irrigation

Micro sprinklers

Overhead sprinklers

Other (please describe)

®aooT

Irrigation Scheduling

1.

How much time do you devote towards making irrigation decisions during an average week?
a. Lessthan 5 minutes



b. 5to 20 minutes
c. 20+ minutes

2. How do you carry out irrigation scheduling in established vineyards (mature, > 5 years old)?
(Please select options within each of a, b, ¢, d. More than one can be selected)

a. Historical irrigation levels

b. Regular visual assessments of vine canopies for signs of water stress
c. Weather forecasts

d. Soil moisture monitoring (sensor-based)

e Soil water tension (e.g. gypsum blocks, tensiometers)
e How many do you have across all your red winegrape vineyards?

e Volumetric water content (e.g. capacitance probes)
e How many do you have across all your red winegrape vineyards?

e. Evapotranspiration (ET)-driven
e How do you obtain your reference ET?

e How do you obtain your crop factors (crop coefficients, K;)?

e Which weather station do you use?

f. Plant water status
What type of sensor(s) do you use? (include make and model)

e How many do you have across all your red winegrape vineyards?

g. Other
e Remote sensing
e UAVs/Drones
e Fixed wing aircraft
e Satellite

What specific dataset or indices are you looking at?

e Not listed (if circled, please describe)

3. If you use historical irrigation practices and/or weather forecast data, are there any specific
barriers that have prevented you from adopting/considering other sensor-based (e.g. soil or
plant sensors) technologies listed? Check one or more boxes from the list below:

a. High cost
b. Unsure of value of technology / lack of understanding



4. Why did you choose the specific irrigation scheduling approach you are currently using?
What motivated this decision? You can circle more than one:

a.

Sm o0 o0T

Familiarity/previous experience

Recommended by colleagues

Availability (e.g. sensor hardware, data access/visualization)
Convenience (or sensors already in place), ease of use
Reliability

Maintenance (if sensors used)

Price

Other:

5. What are your concerns about your current irrigation practices?

a.

@m0 oo0T

No concerns

High energy cost

Maintenance of irrigation infrastructure

Low irrigation system efficiency

Uncertainty about plant and/or soil moisture levels
Inadequate information to make prudent irrigation decisions
Other:

6. What are your future plans in terms of investment/adoption of technologies to aid in
irrigation scheduling? Please describe according to the criteria mentioned below:

a.
b.
c.
d.

Timeframe for investment:
Infrastructure/sensors(s):
Budget:
No current plans to invest in irrigation technology

Thank you for your participation. If you would like to receive a copy of the aggregated survey results
of the region, please fill in your contact details.

BOX to allow participants to fill in name, email address, phone number (optional)

You may optionally continue to the next page to provide some cultivar specific information for a
chance to win a $50 gift card/voucher. Please remember to enter your contact details above before
you proceed to the next page.



Cultivar-specific irrigation

Please fill in all relevant information for the varieties you typically grow focusing on only one specific block per cultivar during growing season (not including
frost protection). Please fill in as much as you are comfortable providing information about.

Average farm

Is this block
- Total gate value for
. deficit .
Size and . . . . seasonal Yield grapes
. Region Vine age irrigated, Typical Number of o
soil type . . . i R o irrigation (t/Ha) ($/tonne)
within (mature, Vine density | and if so irrigation irrigation
of Limestone more than 5 | (vine/ha) what regime (mm | applications ML/ha (2020 3. <3500
plantings . 8 PP (typical and 2016 | b. $500 - $1200
Coast years old) regime? per week) per week .
(Ha) ranges, max | vintage) c. $1200 -
(RDI* or .
SDI*, other) and min) $2000
! d. $2000+
Barbera
Cabernet Franc
Cabernet
Sauvignon
Malbec
Merlot
Nebbiolo
Petit Verdot
Pinot Meunier
Pinot Noir
Shiraz
Tempranillo
Other red:
Chardonnay

Gewdrztraminer

Pinot Gris/Grigio

Riesling

Sauvignon Blanc

Semillon

Other white:

*RDI: Regulated deficit irrigation *SDI: Sustained deficit irrigation
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Irrigation Scheduling
Use of Soil moisture sensors

Soil moisture monitoring (sensor-based)
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Irrigation Scheduling — Concerns
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Variety: Cabernet Sauvignon, Merlot, Shiraz and Chardonnay

Median size area: 7.75 ha Range: 0.1to 45 ha

Soil type: Terra Rossa and Rendzina

Regions: Coonawarra and Mount Benson

Median vine age: 24 years Range: 7 to 35 years

Average vine density: 1908 vines/ha Range: 1580 to 2424 vines/ha

829%0 do not use deficit irrigation regimes, 18%0 using RDI regimes for deficit irrigation No SDI used
Median irrigation volumes: 12.5 mm/week Range: 6 to 16 mm/week

Irrigation frequency: 1 to 4 per week

Seasonal irrigation applied: 0.2 to 3.0 ML/ha (Mount Benson average 2.75 ML/ha)

Annual farmgate value of winegrapes ($/tonne): approx $2000 Range: $1100 to $5000



agronomy @\Py

Review

A Review of Current and Potential Applications
of Remote Sensing to Study the Water Status
of Horticultural Crops

Deepak Gautam and Vinay Pagay *

School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia;
deepak.gautam@adelaide.edu.au
* Correspondence: vinay.pagay@adelaide.edu.au; Tel.: +61-8-83130773

Received: 25 August 2019; Accepted: 9 January 2020; Published: 17 January 2020

Abstract: With increasingly advanced remote sensing systems, more accurate retrievals of crop
water status are being made at the individual crop level to aid in precision irrigation. This paper
summarises the use of remote sensing for the estimation of water status in horticultural crops. The
remote measurements of the water potential, soil moisture, evapotranspiration, canopy 3D
structure, and vigour for water status estimation are presented in this comprehensive review. These
parameters directly or indirectly provide estimates of crop water status, which is critically important
for irrigation management in farms. The review is organised into four main sections: (i) remote
sensing platforms; (ii) the remote sensor suite; (iii) techniques adopted for horticultural applications
and indicators of water status; and, (iv) case studies of the use of remote sensing in horticultural
crops. Finally, the authors’ view is presented with regard to future prospects and research gaps in
the estimation of the crop water status for precision irrigation.

Keywords: UAS; UAV; drone; unmanned; satellite; water stress; irrigation; vegetation index

1. Introduction

Understanding the water status of crops is important for optimal management and application
of water to accommodate for inter and intra-field variability to achieve a specific target, such as
maximum water use efficiency, yield, quality, or profitability [1,2]. The importance of optimal water
management in agriculture in semi-arid or arid regions has become increasingly important in light
of recent water scarcities through reduced allocations, as well as increased demand due to greater
areas under production [3,4]. Climate change is expected to further intensify the situation due to the
increased frequency of heatwaves and drought episodes [5]. Climate change coupled with the
necessity to increase food production due to an increase in global population has placed pressure on
horticultural sector to improve efficiencies in resources use, e.g., water, for sustainable farming [6—
10]. Horticultural crops will have to produce more ‘crop-per-drop’ in the face of limited water
resources. Informed management of water resources whilst maintaining or increasing crop quality
and yield are the primary goals of irrigation scheduling in horticulture. These goals can be achieved
by improving our understanding of the water status of the crops at key phenological stages of
development.

Traditional decision-making for irrigation of horticultural crops includes using information
from a combination of sources such as historical regimes, soil moisture measurements, visual
assessments of soil and/or crop, weather data including evapotranspiration (ET), and measurements
of crop water status using direct-, proximal- or remote-sensing techniques [11-13]. Some growers
undertake routine ground-based measurements, e.g., pressure chamber, for estimation of crop water
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status to make decisions on irrigation [14-16]. These ground-based measurements are robust;
however, destructive, cumbersome, and expensive to acquire a reasonable amount of data [14,16-18].
Consequently, the measured leaf is assumed to represent the average population of leaves of the
individual crop, and a few crops are assumed to represent the average population of the entire
irrigation block. As a result, over- or under-watering can occur, which can lower yield and fruit
quality [19-22]. This is especially evident for non-homogenous blocks where spatial variability of soil
and water status is expected [23-25].

To address some of the limitations of ground-based measurements, remote measurement
techniques were introduced with capabilities to measure at higher spatial resolution, larger area, and
on a regular basis [26-29]. Remote sensing, in particular, unmanned aircraft systems (UAS), presents
a flexible platform to deploy on-demand sensors as a tool to efficiently and non-destructively
measure crop water status [30]. Using thermal and spectral signatures, remote sensing techniques
can be used to characterise a crop’s water status. Knowledge of crop water status allows growers to
more efficiently schedule irrigation (i.e., when and how much water to apply). In this regard, UAS
platforms provide a convenient methodology to monitor the water status across a farm, both spatially
and temporally at the canopy level [31-33]. The spectral, spatial, and temporal flexibility offered by
UAS-based remote sensing may in future assist growers in irrigation decision-making [34,35].

This review provides an overview of the application of remote sensing to understand the crop’s
water status (e.g., leaf/stem water potential, leaf/canopy conductance), soil moisture, ET, and
physiological attributes, all of which can contribute to understanding the crop’s water status to
implement precision irrigation. Although the key focus of this review is UAS-based remote sensing,
a comparison has been undertaken with other remote sensing platforms, such as earth observation
satellites, which are being increasingly used to acquire similar information. In the following sections,
we provide an overview of the most common remote sensing platforms in horticulture, various
sensors used for remote sensing, and several predictive indices of crop water status. Two case studies
of remote sensing in horticultural crops, grapevine and almond, are then presented followed by an
overview of the current research gaps and future prospects.

2. Remote Sensing Platforms

Ground-based direct or proximal sensors acquire instantaneous water status measurement from
a spatial location. For decision-making purposes, the data is generally collected from multiple
locations across a field, which allows geospatial interpolation, such as kriging, to be applied [36-38].
This scale of data collection is, however, cumbersome, inefficient, and error-prone, especially for
water status measurements of large areas [17]. Monitoring and observing farms at a larger spatial
scale prompted the launch of several earth observation satellite systems that typically operate at an
altitude of 180-2000 km [39]. Manned high-altitude aircraft (operating within few km) and, more
recently, UAS (operating under 120 m) filled the spatial gap between high-resolution ground
measurements and relatively low-resolution satellite measurements [40,41]. In the context of water
status estimation for horticultural crops, all the aforementioned remote sensing platforms are utilised
depending on the user requirements [23,42,43]. Each remote sensing platform has its own advantage
and shortcomings. The decision to obtain remote sensing crop water status data from one or more of
these platforms will depend on the spatial and temporal resolution desired. Satellite and manned
aircraft can be useful for regional-scale characterisation, whereas UAS can be more useful to map the
intra-field variability. Vehicle-based ground systems also possess similar measurement capabilities,
like remote sensing, however, at a smaller scale [44,45]. These systems can move within the
horticultural rows obtaining water status measurements of adjacent plants while the vehicle is
moving, enabling them to cover a relatively larger area as compared to ground-based direct
measurements [46—48].
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2.1. Satellite Systems

The use of satellite systems for remote sensing started with the launch of Landsat-1 in 1972
[39,49]. The subsequent launch of SPOT-1 in 1986 and Ikonos in 1999 opened the era of commercial
satellite systems that resulted in rapid improvement in imaging performance, including spatial and
spectral resolution [50]. Continued launch of satellites from the same families, with newer sensor
models and improved capability, resulted in the formation of satellite constellations (e.g., Landsat,
Sentinel, SPOT, RapidEye, GeoEye/WorldView families). The satellite constellation substantially
improved the revisit cycle of the satellite system [51]. Recently, the miniature form of the satellite
termed Nanosat or Cubesat has been developed, which can be deployed on the same orbit in a large
number (20s-100s), enabling frequent and high-resolution data acquisition (e.g., Dove satellite from
Planet Labs) [52].

The earth observation satellite system, such as Landsat, Sentinel, MODIS, RapidEye, and
GeoEye, have been used to study horticultural crops (Table 1). These satellite system offer camera
systems with spectral bands readily available in visible, near infrared (NIR), short-wave infrared
(SWIR), and thermal infrared (TIR). The measurement in these bands provides opportunities to study
a crop’s water status indirectly via, for example, calculation of the normalised difference vegetation
index (NDVI), crop water stress index (CWSI), and ET [8-10] at the field- and regional-scales.

Table 1. Some satellite systems that have been used to study the water status of horticultural crops.

Satellites Band Numbers: Band Designation Spatial Resolution (m) Revisit Cycle
Landsat 7 8: V3 NIR?, SWIR? TIR !, Pan' 15-60 16 days
Landsat 8 11: C1, V3, NIR Y, SWIR? Pan!, Ci !, TIR 2 15-100 16 days
Sentinel-2 13: C1, V3, RE3 NIR2 WV L Cil, SWIR?2 10-60 5 days
Spot-6 and-7 5:Pan’, V3, NIR! 15 1 day
RapidEye 5:V3 NIR, RE! 5 5.5 days
GeoEye-1 5:Pan?, V3 NIR! 0.41-2 3 days

Note: Superscript integers "> 3 represent the number of bands; V = visible, NIR = near infrared, SWIR
= short-wave infrared, TIR = thermal infrared, Pan = panchromatic, C = coastal, Ci = cirrus, RE = red
edge, WV = water vapour.

The reflected/emitted electromagnetic energy from the crop reaching the sensor is recorded at a
specific wavelength. The width of the observed wavelength expressed in full width at half maximum
(FWHM) is called spectral resolution. The number of observed bands and the spectral resolution
indicates the ability of the satellite to resolve spectral features on the earth’s surface. Commonly used
earth observation satellite systems possess between four and 15 bands with approximately 20-200
nm FWHM spectral resolution. The bands are generally designated for the visible and NIR region
with extended capabilities in SWIR, TIR, as well as red edge region (Table 1). The most widely used
band combinations to study the water status of vegetation are the visible, NIR and TIR bands
[23,25,53,54]. With the plethora of satellite systems currently available, user requirements on band
combination may be achieved by using multiple satellites. However, acquiring an extra or a narrower
band to the existing capabilities is not possible.

The ground distance covered per pixel of the satellite image is called the spatial resolution,
whereby, a higher spatial resolution indicates a smaller ground distance. Existing satellite systems,
due to their lower spatial resolution and large coverage, are suited to study larger regions [55]. For a
smaller observation area, such as a farm block, an irrigation zone, a single row of the horticultural
crop, or a single canopy, this spatial resolution is considered sub-optimal. Often, a pixel of the satellite
image comprises of multiple rows and multiple canopies of horticultural crops [42,56]. Thus, the
spectral response on a single pixel of the satellite image includes a mixed spectral signal from the
canopy, inter-row vegetation and/or bare soil. The mixed-pixel is particularly unavoidable in
horticultural crops with large inter-row surfaces, introducing errors in satellite-based estimations
[42,56]. Improving the spatial resolution from freely available Landsat/Sentinel satellites (spatial
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resolution 10-15 m) to such as WorldView-3 (spatial resolution 0.3 m), does not necessarily resolve
single canopies of many horticultural crops.

Current satellite systems generally offer a temporal resolution of about 1-2 weeks this resolution
corresponds to the satellite’s revisit interval (Table 1). For example, freely available Landsat-8 and
Sentinel-2 offer revisit cycles of 16 and 5 days, respectively. Although the MODIS sensor on NASA’s
Terra and Aqua satellites offer a greater temporal resolution (1-2 days), its spatial resolution is
relatively coarse (250 m-1 km) to be valuable for horticulture [25]. The revisit cycle of satellites does
not alone represent the timeframe on which the data can be interpreted. For instance, post-data
acquisition, there are often delays in data transfer to the ground station, handling, and delivery to the
end user. The end user then needs to process the data before making an interpretation. Such
processing can be a combination of atmospheric, radiometric, and geometric corrections, where
applicable [57,58]. Furthermore, as the agricultural applications of the satellite imagery are
illumination sensitive and weather dependent, conditions have to be optimal on the satellite revisit
day to avoid data corruption due to, for example, cloud cover [23,53]. Cloud corrupted data (~55% of
the land area is covered by cloud at any one time [59]) will require users to wait for the next revisit
to attempt the data acquisition. Time-series image fusion techniques, such as the spatial and temporal
adaptive reflectance fusion model, can improve the spatial and temporal resolution of the satellite
data [60,61]. These fusion techniques blend the frequent (however low-resolution) with higher-
resolution (but infrequent) satellite data [62,63]. The result combines the best aspects of multiple
satellite systems to produce frequent and higher-resolution data, which can be useful for timely
monitoring of water status.

The clear advantage of the satellite system is the ability to capture data at a large scale and at an
affordable cost (e.g., the user can download Landsat and Sentinel data for free). The compromise with
the satellite data is in spatial resolution, as well as the relatively long revisit cycle (in the order of days
to weeks), making the data less than ideal for specific applications, e.g., irrigation scheduling.

2.2. Manned Aircraft System

Operating within few kilometres above ground level, manned aircraft have been used to
remotely acquire agricultural data at higher spatial detail (compared to the satellites) and over a
larger region (compared to UAS) [42,64]. Light fixed-wing aircraft and helicopters are the commonly
used manned aircraft employed in agricultural remote sensing. The fixed-wing aircraft generally flies
higher and faster, enabling the coverage of a larger area, whereas the helicopters are traditionally
flown lower and slower, enabling a spatially detailed observation. A significant advantage of the
manned aircraft, compared to UAS, lies in their ability to carry heavier high-grade sensors, such as
AVIRIS, HyPlant, HySpex SWIR-384, Specim AisaFENIX, and Riegl LMS Q240i-60 [65-67]. The use
of manned aircraft is, however, limited by high operational complexity, safety regulations,
scheduling inflexibility, costs, and product turnaround time. As a result, these platforms are barely
used as compared to the recent surge in the use of UAS, specifically for horticultural crops [68-70].

In horticulture, manned aircraft was used to characterise olive and peach canopy temperature
and water stress using specific thermal bands (10.069 pm and 12.347 um) of a wideband (0.43-12.5
um) airborne hyperspectral camera system [71,72]. This work found moderate correlations (R?=0.45-
0.57) of ground vs. aerial olive canopy temperature measurements [72], and high correlations (R? =
0.94) of canopy temperature vs. peach fruit size (diameter) [71]. The advantage of manned aircraft for
remote sensing of a large region was highlighted in recent work that characterised regional-scale
grapevine (Vitis vinifera L.) water stress responses of two cultivars, Shiraz and Cabernet Sauvignon,
in Australia [64]. Airborne thermal imaging was able to discriminate between the two cultivars based
on their water status responses to soil moisture availability (Figure 1).
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Shiraz Cabernet
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50 m

Figure 1. Water status of Shiraz and Cabernet Sauvignon under similar soil moisture as captured from
manned aircraft [64].

2.3. Unmanned Aircraft Systems

Both the fixed-wing and the rotary-wing variant of UASs are used in agricultural remote
sensing. Each variant has its advantages and shortcomings vis-a-vis sensor payload, flexibility, and
coverage. In this regard, the literature provides a list of state-of-the-art UAS [73], their categorisation
[74], and overview of structural characteristics, as well as flight parameters [75], in the context of
agricultural use. Depending on the number of rotors, a rotary-wing UAS can be a helicopter, a
quadcopter, a hexacopter, or an octocopter, among others. Rotary-wing UAS are more agile and can
fly with a higher degree of freedom [76], while fixed-wing UAS needs to be moving forward at a
certain speed to maintain thrust. As a result, rotary-wing UAS provides flexibility and specific
capabilities, such as hovering, vertical take-off and landing, vertical (up and down) motions, or return
to the previous location. On the contrary, fixed-wing UAS fly faster, carry heavier payloads, and have
greater flying time enabling coverage of larger areas in a single flight [77]. Recently developed fixed-
wing UAS with vertical take-off and landing capabilities, such as BirdEyeView FireFly6 PRO, Elipse
VTOL-PPK, and Carbonix Volanti, captures the pros of both fixed-wing and rotary-wing, making
them a promising platform for agricultural purposes. In the context of precision agriculture, the
application of UAS, their future prospects, and knowledge gaps are discussed in [53,78-81]. While
many horticultural crops have been studied using UAS technology, the most studied horticultural
crops are vineyards [31,82-84], citrus [85,86], peach [32,33], olive [18,87,88], pistachio [89,90], and
almond [91-94], among others [95-99]. Some of the UAS types used for water status studies of
horticultural crops are shown in Figure 2.

(b)
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(d)

Figure 2. Examples of unmanned aircraft systems (UAS) used to study water status in horticulture

crops: (a) hexacopter equipped with RGB, multispectral and thermal camera at The University of
Adelaide, Adelaide, Australia (b) quadcopter equipped with a thermal and multispectral camera
[100], (c) fixed-wing aircraft used for GRAPEX project to carry RGB, thermal and monochrome camera
with narrowband filters [101], and (d) helicopter used for various studies of crop water status
[18,92,102].

UAS offers flexibility on spatial resolution, observation scale, spectral bands, and temporal
resolution to collect data on any good weather day. However, like satellite and manned aircraft, the
UAS is inoperable during precipitation, high winds, and temperatures. By easily altering the flying
altitude, the UAS provides higher flexibility to observe a larger area with lower spatial resolution or
smaller area with much greater detail [103]. Temporally, the UAS can be scheduled at a user-defined
time at short notice, thus accommodating applications that are time-sensitive, such as capturing vital
phenological stages of crop growth. Spectrally, UAS offer flexibility to carry on-demand sensors and
interchangeability between sensor payloads; thus, any desired combination of sensors and spectral
bands can be incorporated to target specific features.

UAS-acquired image data requires post-processing before it can be incorporated into the grower
decision-making process. Mosaicking of UAS images currently has a turnaround time of
approximately one day to one week, subject to the size of the dataset, computational power, and
spectral/spatial quality of the product [104,105]. Spectral quality of the data is of optimal importance,
whereas the spatial quality can be of less importance, such as for well-established horticultural crops.
Higher spectral quality demands calibration of the spectral sensors and correction of atmospheric
effects. Following post-processing of aerial images, the UAS-based spectral data have shown to be
highly correlated with ground-based data [82,102,106].

The most common UAS-based sensor types to study the crop water status are the thermal,
multispectral and RGB, while hyperspectral and LiDAR (Light detection and ranging) sensors are
used less often [23,79,107]. Spectral sensors provide the capability to capture broader physiological
properties of the crop, such as greenness (related to leaf chlorophyll content and health) and biomass,
that generally correlate with crop water status [82,108]. Narrower band spectral sensors provide
direct insight into specific biophysical and biochemical properties of crops, such as via photochemical
reflectance index (PRI) and solar-induced chlorophyll fluorescence (SIF), which reflects a plant’s
photosynthetic efficiency [109,110]. Thermal-based sensors capture the temperature of the crop’s
surface, which indicates the plant’s stress (both biotic and abiotic) [53]. Generally, digital RGB camera
and LiDAR can be used to quantify 3D metrics, such as the plant size and shape, via 3D pointclouds
with sufficient accuracy for canopy level assessment [111-118].

3. Remote Sensor Types

3.1. Digital Camera

A digital camera typically incorporates an RGB, modified RGB, and a monochrome digital
camera. The lens quality of the camera determines the sharpness of the image, while the resolution
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of the camera determines its spatial resolution and details within an image. The RGB camera uses
broad spectral bandwidth within the blue, green and red spectral region to capture energy received
at the visible region of the electromagnetic spectrum. The images are used to retrieve dimensional
properties of the crop, terrain configuration, macrostructure of the field, and the spatial information.
Based on the dimensional properties, such as size, height, perimeter, and area of the crown, the
resource need practices can be estimated [119-121]. Generally, a larger crop is expected to more
quickly use available water resources, resulting in crop water stress at a later stage of the season if
irrigation is not sufficient. The evolution of canopy structure within and between seasons can be
useful to understand the spatial variability within the field and corresponding water requirements.
The macro-structure of horticultural crops, such as row height, width, spacing, crop count, the
fraction of ground cover, and missing plants, can be identified remotely, which can aid in the
allocation of resources [113,122]. The terrain configuration in the form of a digital elevation model
(DEM) generated from a digital camera can also enable understanding of the water status in relation
to the aspect and slope configuration of the terrain.

3.2. Multispectral Camera

A multispectral camera offers multiple spectral bands across the electromagnetic spectrum. Most
common airborne multispectral cameras have 4-5 bands which include rededge and NIR bands in
addition to the visible bands, R-G-B (e.g., Figure 3a,c). Configurable filter placement of the spectral
band is also available, which can potentially target certain physiological responses of horticultural
crops [102]. Spectrally, the airborne multispectral camera has been reported to perform with
consistency, producing reliable measurements following radiometric calibration and atmospheric
correction [123-125]. Their spatial resolution has been found to be sufficient for horticultural
applications enabling canopy level observation of the spectral response. For this reason, as well as
relatively low cost, multispectral cameras are used more frequently in horticulture applications.

)

Figure 3. Some examples of sensors used on a UAS platform to study water status of horticultural
crops: (a) A multispectral camera (Tetracam Mini-MCA-6, Tetracam, Inc., Chatsworth, CA, USA)
[126]. (b) A thermal camera (FLIR TAU II, FLIR Systems, Inc., USA) [100,108]. (c) A multi-sensor
camera setup with an RGB (Sony a7R III, Sony Electronics, Inc., Minato, Tokyo, Japan), a multispectral
(MicaSense RedEdge, MicaSense Inc., Seattle, WA, USA), and a thermal (FLIR TAU II 640, FLIR
Systems, Inc., USA) camera. (d) A micro-hyperspectral camera (Micro-Hyperspec, Headwall
Photonics, MA, USA) [110].

Chlorophyll and cellular structures of vegetation absorb most of the visible light and reflect
infrared light. The rise in reflectance between the red and NIR band is unique to live green vegetation
and is captured by vegetation spectral index called NDVI (Table 2, Equation (3). Once the vegetation
starts to experience stress (biotic and abiotic), its reflectance in the NIR region is reduced, while the
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reflectance in the red band is increased. Thus, such stress is reflected in the vegetation profile and
easily captured by indices, such as NDVI. For this reason, NDVI has shown correlations with a wide
array of crops response including vigour, chlorophyll content, leaf area index (LAI), crop water stress,
and occasionally yield [34,82-84,127].

The rededge band covers the portion of the electromagnetic spectrum between the red and NIR
bands where reflectance increases drastically. Studies have suggested that the sharp transition
between the red absorbance and NIR reflection is able to provide additional information about
vegetation and its hydric characteristics [128]. Using the normalised difference red edge (NDRE)
index, the rededge band was found to be useful in establishing a relative chlorophyll concentration
map [127]. Given the sensitivity of NDRE, it can be used for applications, such as crops drought stress
[107]. With regard to the water use efficiency, a combination of vegetation indices (VIs) along with
structural physiological indices were found to be useful to study water stress in horticultural crops
[34,82,129].

3.3. Hyperspectral

Hyperspectral sensors have contiguous spectral bands sampled at a narrower wavelength
intervals spanning from visible to NIR spectrum at a high to ultra-high spectral resolution (Figure
3d). Scanning at contiguous narrow-band wavelengths, a hyperspectral sensor produces a three
dimensional (two spatial dimensions and one spectral dimension) data called hyperspectral data
cube. The hyperspectral data cube is a hyperspectral image where each pixel contain spatial
information, as well as the entire spectral reflectance curve [130]. Based on the operating principle
and output data cube, hyperspectral sensors for remote sensing can include a point spectrometer (aka
spectroradiometer), whiskbroom scanner, pushbroom scanner, and 2D imager (Figure 4) [130,131]. A
point spectrometer, samples within its field of view solid angle to produce an ultra-high spectral
resolution spectral data of a point [130,132]. A whiskbroom scanner deploys a single detector onboard
to scan one single pixel at a time. As the scanner rotates across-track, successive scans form a row of
the data cube, and as the platform moves forward along-track, successive rows form a hyperspectral
image [133]. A pushbroom scanner deploys a row of spatially contiguous detectors arranged in the
perpendicular direction of travel and scans the entire row of pixels at a time. As the platform moves
forward, the successive rows form a two-dimensional hyperspectral image [40,134]. The 2D imager
using different scanning techniques [130] captures hyperspectral data across the image scene
[135,136]. The point spectrometer offers the highest spectral resolution and lowest signal-to-noise
ratio (SNR) among the UAS-compatible hyperspectral sensors [137,138].
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Figure 4. The data cube structure of different spectral sensors. The number of bands and resolution is
shown as an example and does not indicate true sensor capability (adapted from [130]).



Agronomy 2020, 10, 140 9 of 35

In horticultural applications, hyperspectral data, due to the high resolution contiguous spectral
sampling, possesses tremendous potential to detect and monitor specific biotic and abiotic stresses
[139]. Narrowband hyperspectral data was used to detect water stress using the measurement of
fluorescence and PRI over a citrus orchard [110]. PRI was identified as one of the best predictors of
water stress for a vineyard in a study that investigated numerous VIs using hyperspectral imaging
[140]. High-resolution thermal imagery obtained from a hyperspectral scanner was used to map
canopy stomatal conductance (gs) and CWSI of olive orchards where different irrigation treatments
were applied [18]. With the large volume of spatial/spectral data extracted from the hyperspectral
data cube, machine learning will likely be adopted more widely in the horticultural environment to
model water stress [141]. See Reference [54] for a comprehensive review of hyperspectral and thermal
remote sensing to detect plant water status.

3.4. Thermal

Thermal cameras use microbolometers to read passive thermal signals in the spectral range of
approximately 7-14 um (Figure 3b). Small UAS are capable of carrying a small form-factor thermal
camera with uncooled microbolometers, which does not use an internal cooling mechanism and,
therefore, does not achieve the high SNR that can be found in cooled microbolometer-based thermal
cameras. An array of microbolometer detectors in the thermal camera receives a thermal radiation
signal and stores the signal on the corresponding image pixel as raw data number (DN) values. The
result is a thermal image where each pixel has an associated DN value, which can be converted to
absolute temperature. A representative list of commercial thermal cameras used on UAS platforms
and their applications with regard to agricultural remote sensing is found in the literature [23,53,73].
Thermal imagery enables the measurement of the foliar temperature of plants. The foliar temperature
difference between well-watered and water-stressed crops is the primary source of information for
water stress prediction using a thermal sensor [142]. When mounted on a remote sensing platform,
the canopy level assessment of crop water status can be performed on a large scale.

Thermal cameras are limited by their resolution (e.g., 640 x 512 is the maximum resolution of
UAS compatible thermal cameras in the current market) and high price-tag [53]. The small number
of pixels results in low spatial resolution limiting either the ability to resolve a single canopy or ability
to fly higher and cover a larger area. If flown at a higher altitude, the effective spatial resolution may
be inadequate for canopy level assessment of some horticultural crops. For example, a FLIR Tau2 640
thermal camera with a 13 mm focal length when flown at an altitude of approximately 120 m results
in a spatial resolution of 15.7 cm. For relatively large horticultural crops, such as grapevine, almond,
citrus, and avocado, the resolution at a maximum legal flying altitude of 120 m in Australia (for small-
sized UAS) offers an adequate spatial resolution to observe a single canopy.

Another challenge with the use of thermal cameras is the temporal drift of the DN values within
successive thermal images, especially with uncooled thermal cameras [143]. Due to the lack of an
internal cooling mechanism for the microbolometer detectors, DN values registered by the
microbolometers experience temporal drift i.e., the registered DN values for the same temperature
target will drift temporally. Thus, the thermal image can be unreliable especially when the internal
temperature of the camera is changing rapidly, such as during camera warmup period or during the
flight when a gust of cool wind results in cooling of the camera. To overcome this challenge, the user
may need to provide sufficient startup time before operation (preferably 30-60 min) [102,143-145],
shield the camera to minimize the change in the internal temperature of the camera [142], calibrate
the camera [146-153], and perform frequent flat-field corrections.

3.5. Multi-Sensor

To carry multiple sensors, the total UAS payload needs to be considered that includes, in
addition to the sensors, an inertial measurement unit (IMU) and global navigation satellite system
(GNSS) for the georeferencing purpose [40,154]. Higher accuracy sensors tend to be heavier, and in a
multi-sensor scenario, the payload can quickly reach or even exceed the payload limit. This has
limited contemporary measurements in earlier multirotor UAS requiring separate flights for each of
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sensor [126]. The use of fixed-wing UAS has allowed carrying higher payloads due to the much larger
thrust-to-weight ratio as compared to a rotary-wing aircraft [155]. Similarly, recent advancement in
UAS technology and lightweight sensors have enabled multirotor (payload 5-6 kg readily available)
to onboard multi-sensors.

Water status of crops is a complex process influenced by a number of factors including the
physiology of the crop, available soil moisture, the size and vigour of the crop, and meteorological
factors [30,108,116,156,157]. For this reason, a multi-sensor platform is used to acquire measurements
of the different aspects of the crop for water status assessment [34,102,108]. The most common
combination of sensors found in the literature is the RGB, multispectral (including rededge and NIR
bands) and thermal. Together, these sensors can be used to investigate the water status of the crop
using various indicators, such as PRI, CWS], fluorescence, and structural properties, with the aim of
improving the water use efficiency [102,110,158-160].

4. Techniques of Remote Sensing in Horticulture

4.1. Georeferencing of Remotely Sensed Images

Georeferencing provides a spatial reference to the remotely sensed images such that the pixels
representing crops or regions of interest on the images are correctly associated with their position on
Earth. The georeferencing process generally uses surveyed coordinate points on the ground, known
as ground control points (GCPs), to determine and apply scaling and transformation to the aerial
images [161]. Alternatively, instead of GCPs, the user can georeference aerial images by using the
accurate position of the camera, or by co-registration with the existing georeferenced map [105,162].

In the case of UAS-based images, the capture timing is scheduled to ensure a recommended
forward overlap (>80%) between successive images. The flight path is designed to ensure the
recommended side overlap (>70%) between images from successive flight strips. Thus, the captured
series of images are processed using the Structure-from-Motion (SfM) technique to generate a 3D
pointcloud and orthomosaic [73,130] (see Figure 5). Commonly used SfM software to process the
remote sensing images are Agisoft PhotoScan and Pix4D. The commonly retrieved outputs from the
SfM software for assessment of horticulture crops include the orthomosaic, digital surface model
(DSM), DEM, and 3D pointcloud [113,126,163]. This technique of georeferencing can be applied to
any sensor that produces images, e.g., RGB, thermal, or multispectral cameras [126,164,165].
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Figure 5. A typical workflow of structure-from-motion (SfM) to produce georeferenced products from
UAS-based image sets and ground control points (adapted from [166,167]). SIFT = scale-invariant
feature transform; ANN = approximate nearest neighbour; RANSAC = random sample consensus;
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CMVS = clustering views for multi-view stereo; PMVS = patch-based multi-view stereo; GCP = ground
control points.

The complexity of georeferencing of hyperspectral observations depends on the sensor type, i.e.,
imaging or non-imaging. A non-imaging spectroradiometer relies on the use of a GNSS antenna and
an IMU for georeferencing the point observation [130,132,138,168]. An imaging hyperspectral
camera, generally, in addition to GNSS and IMU measurement, uses the inter-pixel relation in StM
to produce a georeferenced orthomosaic [40,134,135,169,170].

4.2. Calibration and Correction of Remotely Sensed Images

Ensuring consistency, repeatability, and quality of the spectral observation requires stringent
radiometric, spectral, and atmospheric corrections [123,171-177]. Spectral and radiometric calibration
is performed in the spectral calibration facility in darkroom settings. The sensor’s optical properties
and shift in spectral band position are corrected during the spectral calibration process. Radiometric
calibration enables conversion of the recorded digital values into physical units, such as radiance.
Infield operation of the spectral sensor is influenced by variations in atmospheric transmittance from
thin clouds, invisible to the human observer. Changes in atmospheric transmittance affect the
radiance incident on the plant. As a result, the change in acquired spectral response by the sensor
may not represent the change in plants response but the change in incident radiation on the plant.
The most common method to convert the spectral data to reflectance is by generating an empirical
line relationship between sensor values and spectral targets, such as a Spectralon® or calibration
targets. The use of downwelling sensors, such as a cosine corrector [137], or the use of a ground-based
PAR sensor enables absolute radiometric calibration to generate radiance [130].

The calibration of the broad wavelength multispectral sensor is generally less stringent than the
hyperspectral. Generally, multispectral sensors are used to compute normalised indices such as
NDVI. The normalised indices are relatively less influenced, although significant, by the change in
illumination conditions which affect the entire spectrum proportionally [29,101]. In this regard,
radiometric calibration of the multispectral camera has used a range of stringent to simplified, and
vicarious approaches [123,125,171,173,178-180]. Some multispectral cameras are equipped with a
downwelling light sensor, which is aimed at correcting for variations in atmospheric transmittance.
However, the performance of such downwelling sensors (without a cosine corrector) on multispectral
cameras have been reported to have directional variation resulting in unstable correction, indicating
the inability of the sensor to incorporate the entire hemisphere of diffused light [124,137].

The radiometric calibration of the thermal images is typically based on the camera’s DN to object
temperature curve, which provides the relationship between the DN of a pixel and a known object
temperature, usually of a black body radiator. Measurement accuracy and SNR of the camera under
varying ambient temperatures can be improved by using calibration shutters, which are recently
available commercially. Furthermore, for low measurement errors (under 1 °C), thermal data requires
consideration to the atmospheric transmittance [18,102]. Flying over a few temperature reference
targets placed on the ground reduces the temporal drift of the camera [142,143,181]. Temperature
accuracy within a few degrees was achieved by flying over the targets three times (at the start, middle
and end of UAS operation) and using three separate calibration equations for each overpass [142].
Additionally, using the redundant information from multiple overlapping images, drift correction
models have been proposed, which lowered temperature error by 1 °C as compared to uncorrected
orthomosaic [152]. The manufacturer stated accuracies (generally +5 °C) can be sufficient to access
the field variability and to detect “hotspots” of water status. However, the aforementioned calibration
and correction of the thermal cameras are required for quantitative measurement as a goal [143]. In
this regard, current challenges and best practices for the operation of thermal cameras onboard a UAS
is provided in the literature [143].
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4.3. Canopy Data Extraction

A key challenge in remote sensing of horticultural as compared to agricultural crops arises due
to the proportion of inter-row ground/vegetation cover and resulting mixed pixels. The proportion
of the mixed pixels increases with the decrease in spatial resolution of the image. Most of the pixels
towards the edge of the canopy contain a blend of information originating from the sun-lit canopy,
shadowed leaves, and inter-row bare soil/cover crop. A further challenge can arise for some crops,
such as grapevine, due to overlapping of adjacent plants.

The canopy data from orthomosaic has been extracted using either a pixel-based or an object-
based approach. Earlier studies manually sampled from the centre of crop row which most likely
eliminated the mixed pixels [182]. In the pixel-based approach, techniques, such as applying global
threshold and masking, have been used. Binary masks, such as NDVI, eliminates non-canopy pixels
from the sampling [82,84]. Combining the NDVI mask with the canopy height mask can exclude the
pixels associated with non-vegetation, as well as vegetation that does not meet the height threshold.
The pixel-based approach, however, can result in inaccurate identification of some crops due to pixel
heterogeneity, mixed pixels, spectral similarity, and crop pattern variability.

In the object-based approach, using object detection techniques, neighbouring pixels with
homogenous information, such as spectral, textural, structural, and hierarchical features, are grouped
into “objects”. These objects are used as the basis of object-based image analysis (OBIA) classification
using classifiers, such as k-nearest neighbour, decision tree, support vector machine, random forest,
and maximum likelihood [122,183-185]. In the horticultural environment, OBIA has been adopted to
classify and sample from pure canopy pixels [119,122,186]. Consideration should be provided on the
number of features and their suitability for a specific application to reduce the computational burden,
as well as to maintain the accuracies. The generalisation of these algorithms for transferability
between study sites usually penalises the achievable accuracy. For details in object-based approach
of segmentation and classification, readers are directed to literatures [122,183,185,187-189].

Other techniques found in the literature include algorithms, such as “Watershed’, which has been
demonstrated in palm orchards [82,190]. Vine rows and plants have been isolated and classified using
image processing techniques, such as clustering and skeletisation [188,191-193]. Similarly, the
gridded polygon, available in common GIS software, such as ArcGIS and QGIS, can be used in
combination with zonal statistics for this purpose. When working with the low-resolution images,
co-registration with the high-resolution images has been proposed, whereby, the high-resolution
images enable better delineation of the mixed pixels [194]. For this reason, spectral and thermal
sensors, which are usually low in resolution, are generally employed along with high-resolution
digital cameras.

4.4. Indicators of Crop Water Status

A crop’s biophysical and biochemical attributes can be approximated using different indices and
quantitative products. For example, CWSI is used to proxy leaf water potential (W), stem water
potential (Wstem), gs, and net photosynthesis (Pn) [83,100,195]. With regard to horticultural crops, water
status has been assessed using a number of spectral and thermal indices (Table 2).

Table 2. Commonly used vegetation and thermal indices to study the water status of horticultural

crops.
Indicators Sensor Purpose References
Te, (Tc = Ta) Thermal Wetem, gs, yield [34,82,85,99,110]
Ig, 13 Thermal \Ilstem, s [82,196]
18,31 7,99,100,182,194,197
CWSI Thermal \yleaf, \ystem, s Pn, yleld [ 8/3 ’33’85’90’9 1’992]/ OO’ 8 g 9 ’ ?
Th 1+
(Te - Ta)/NDVI erma Watem, g5 [82,200]
multispectral
NDVI Multispectral Wstem, gs, yield, LAL vigour [34,56,82,86,182,201]

GNDVI Multispectral Wstem, g5, yield [34,82]
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RDVI Multispectral Wstem, gs [82,86,182]
PRI Multispectral Wieaf, gs [86,110,182]
Fluorescence Hyperspectral Wieat, gs [110]
WBI Hyperspectral Wieat, gs [139,202,203]
SIF Hyperspectral Water stress [204-206]

Note the acronyms: Tc = Canopy temperature, Ta = ambient temperature, Is = conductance index, I3 = stomatal
conductance index, CWSI = crop water stress index, NDVI = normalised difference vegetation index, GNDVI =
green normalised difference vegetation index, RDVI = renormalized difference vegetation index, PRI =
photochemical reflectance index, Fluorescence = chlorophyll fluorescence, WBI = water band index, SIF = solar-
induced chlorophyll fluorescence, LAI = leaf area index.

4.4.1. Canopy Temperature

A plant maintains its temperature by transpiring through the stomata to balance the energy
fluxes in and out of the canopy. As the plant experience stress (both biotic and abiotic), the rate of
transpiration decreases, which results in higher canopy temperature (Tc), which can be a proxy to
understand the water stress in the plant [207]. In this regard, crop water stress showed a correlation
with canopy temperature extracted from the thermal image [208], which enables mapping the spatial
variability in water status [209]. Leaf/canopy temperature alone, however, does not provide a
complete characterisation of crop water status, for instance, an equally stressed canopy can be 25 °C
or 35 °C, depending on the current ambient temperature (Ta). Thus, canopy-to-air temperature
difference (T — Ta) was proposed, which showed a good correlation with the Wstem, Wieat, and gs in
horticultural crops [85,99,182].

4.4.2. Normalised Thermal Indices

The CWS], the conductance index (Ig) and the stomatal conductance index (I3) are thermal
indices most commonly used to estimate crop water status and gs [210-212]. These indices provide
similar information, however, use a different range of numbers to represent the level of water stress.
The CWSI is normalised within zero and one, whereas Iz and I3 represent stress using numbers
between zero and infinity. CWSI has been adopted most widely in horticultural applications to assess
the water status of crops, such as the grapevines [100,213], almond [91,198], citrus [85,110], and others
[18,87,99,214]. By normalising between the lower and upper limits of (Tc — Ta), the CWSI of the canopy
presents quantifiable relative water stress. The formula for CWSI computation is defined as in
Equation (1) [208,212].

(Tc=Ta)—(Tc—Ta)LL
WSI =
C S (Tc_Ta)UL_(Tc_Ta)LL, (1)

where (T, — Ty)y. and (T, — T,) represent the upper and lower bound of (T. — Tx) which are found
in the water-stressed canopy and well-watered canopy transpiring at the full potential (or maximum)
rate, respectively. Assuming a constant ambient temperature, Equation (1) can be simplified to
Equation (2), which is the most widely reported formulation of CWSI with regard to the horticultural
remote sensing.

(Tc—Twet)
CWSI = ———=
(Tdry_Twet), (2)

where Twet is the temperature of canopy transpiring at the maximum potential, and Tar is the
temperature of the non-transpiring canopy. CWSI has been shown to be well-correlated with direct
measurements of crop water status in the horticultural environment [18,31,32,90,99]. In this regard, a
correlation of CWSI with various ground measurements, such as Wieat [18,31,197], Wstem [33,90,194],
and gs [18,90,100], have been established. Diurnal measurements of CWSI compared with Wicat
showed the best correlation at noon [89,197,209].

CWSI is a normalised index, i.e., relative to a reference temperature range between Twet and Tary,
which is specific to a region and crop type; thus, CWSI is not a universal quantitative indicator of
crop water status. For instance, a CWSI of 0.5 for two different varieties of grapevines at different
locations does not conclusively inform that they have equal or superior/inferior water status.



Agronomy 2020, 10, 140 14 of 35

Furthermore, the degree of correlation can change depending on the isohydric/anisohydric response
of crop [214] where early/late stomatal closure affects the indicators of water stress [110]. Moreover,
phenological stage affects the relationship between remotely sensed CWSI and water stress [197].
Thus, water stress in a different crop, at a different location and at a different phenological stage, will
have a unique correlation with CWSI and, therefore, needs to be established independently.

There are multiple methods to measure the two reference temperatures, Twet and Tary, which
could result in variable CWSI values depending on the method used. The first method is to measure
the two reference temperatures on the crop of interest. Tary can be estimated by inducing stomatal
closure, which is the leaf temperature approximately 30 min after applying a layer of petroleum jelly
e.g., Vaseline to both sides of a leaf. This effectively blocks stomata and, therefore, impedes leaf
transpiration. Twet can be estimated by measuring leaf temperature approximately 30 s after spraying
water on the leaf, which emulates maximum transpiration [23,83]. The advantage of this method is
that the stress levels are normalised to actual plants response, whereas the necessity to repeat the
measurement for every test site after each flight can be cumbersome. In an alternative (second)
approach the range can be established based on meteorological data e.g., setting Tary to 5 °C above air
temperature and Twet measured from an artificial surface. This method is also limited to local scale
and presents a problem regarding the choice of material, which ideally needs to have similar to leaf
emissivity, aerodynamic and optical properties [54,87]. The third method uses the actual temperature
measurement range of the remote sensing image [33,97]. This method is simple to implement,
however, works on the assumption that the field contains enough variability to contain a
representative Twet and Tary. Fourth, the reference temperatures can be estimated by theoretically
solving for the leaf surface energy balance equations, however, are limited by the necessity to
compute the canopy aerodynamic resistance [87]. Standard and robust Twet and Tary measurements
are needed to characterize CWSI with accuracy, especially for temporal analysis [85,87,211]. The level
of uncertainty due to the adaptation of different approaches for Twet and Tary determination in the
instantaneous and seasonal measurements of CWSI is not known. Nonetheless, adopting a consistent
approach, CWSI has been shown to be suitable for monitoring the water status and making irrigation
decisions of horticultural crops [31,85].

4.4.3. Spectral Indices

Crops reflectance properties convey information about the crop, for instance, a healthier crop
has higher reflectance in the NIR band. Most often, the bands are mathematically combined to form
VIs, which provide information on the crop’s health, growth stage, biophysical properties, leaf
biochemistry, and water stress [29,215-218]. Using multispectral or hyperspectral data, several Vis,
such as green normalised difference vegetation index (GNDVI), renormalised difference vegetation
index (RDVI), optimized soil-adjusted vegetation index (OSAVI), transformed chlorophyll
absorption in reflectance index (TCARI), and TCARI/OSAVI, amongst others [34,79,82], can be
calculated that correlate with the water stress of horticultural crops (see Table 2). The most widely
studied VI in horticulture, in this regard, is the NDVI (Equation (3)).

Rnir—Rr

NDVI =
Rpir+Ry” ©)

where R,; and R, represent the spectral reflectance acquired at the NIR and red spectral regions,
respectively. In horticulture, NDVI has been used as a proxy to estimate the vigour, biomass, and
water status of the crop. A vigorous canopy with more leaves regulates more water, therefore
remaining cooler when irrigated [200] and experiencing early water stress when unirrigated. With
regard to irrigation, the broadband normalised spectral indices (such as NDVI) are suitable to detect
spatial variability and to identify the area that is most vulnerable to water stress. However, these
indices are not expected to change rapidly to reflect the instantaneous water status of plants that are
needed to make decisions on irrigation scheduling.

The multispectral indices along with complementary information in thermal wavelengths have
proven to be well suited to monitoring vegetation, specifically in relation to water stress [219]. The
ratio of canopy surface temperature to NDVI, defined as temperature-vegetation dryness index
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(TVDI), was found to be useful for the study of water status in horticultural crops. TVDI exploits the
fact that vegetation with larger NDVI will have a lower surface temperature unless the vegetation is
under stress. As most vegetation normally remains green after an initial bout of water stress, the
TVDI is more suited than NDVI for early detection of water stress as the surface temperature can rise
rapidly even during initial water stress [200].

Similarly, narrowband VIs that have been studied in relation to remote sensing of water status
are PRI and chlorophyll fluorescence, which have been directly correlated to the crop Wi, gs
[110,182,204]. Several hyperspectral indices to estimate water status have been identified [139];
however, their application in remote sensing of horticultural crops is at its infancy. Hyperspectral
indices specific to water absorption bands around 900 nm, 1200 nm, 1400 nm, and 1900 nm may be
used to detect the water status of horticultural crops. The absorption features were found to be highly
correlated with plant water status [139]. Water band index (WBI), as defined in Equation (4), has been
shown to closely track the changes in the plant water status of various crops [202,203].

Ro70
WBI = — 4
Rooo @
Other water-related hyperspectral indices with potential application for horticultural crops can
be found in the literature [139,202,203]. Hyperspectral data possess the capability to reflect the
instantaneous water status of the plant, which can be useful for quantitative decision-making on

irrigation scheduling.

4.4.4. Soil Moisture

The moisture status of the soil provides an indication of the available water resource to the crop.
Soil moisture is traditionally measured indirectly using soil moisture sensors placed below the
surface of the soil. A key challenge with using soil moisture sensors are the spatial distribution of
moisture, both vertically and horizontally, to account for inherent field-scale variability. For instance,
the root system of some horticultural crops, such as grapevine, is capable of accessing water up to 30
m deep, while customer-grade soil moisture probes generally extend to 1.5 m in depth or less. Thus,
soil moisture probes do not capture all the water available to the crop as they are point measures and
not necessarily where the roots are located. Moreover, estimation of soil moisture across spatial and
temporal scales is of interest for various agricultural and hydrological studies. Optical, thermal, and
microwave remote sensing with their advantages relating to high spatial scale and temporal
resolutions could potentially be used for soil moisture estimation [220-222]. L-band microwave
radiometry, a component of synthetic aperture radar systems, has been shown to be a reliable
approach to estimate soil moisture via satellite-based remote sensing [223], such as using the ESA’s
Soil Moisture and Ocean Salinity (SMOS) [224] and NASA’s Soil Moisture Active Passive (SMAP)
satellites [225,226]. The limitation of the SMOS and SMAP missions, with regard to horticultural
application, is their depth of retrieval (up to 5 cm) and spatial resolution (in the order of tens of
kilometre) [227-229]. As an airborne application, the volumetric soil moisture has been estimated by
analysing the SNR of the GNSS interference signal [230,231]. With aforementioned capabilities, a
combination of satellite and airborne remote sensing may, in the future, be a reliable tool to map soil
moisture across spatial, temporal and depth scales.

4.4.5. Physiological Attributes

Using the SfM on remotely-sensed images, 3D canopy structure, terrain configurations, and
canopy surface models can be derived [113,114,119,186,232]. By employing a delineation algorithm
on the 3D models, the 3D attributes of the crops and macrostructure are determined more accurately
[120,122,233]. Crop surface area and terrain configuration (e.g., slope and aspect) may help to develop
an optimal resource management strategy. For example, crops located at a higher elevation within
an irrigation zone may experience a level of water stress due to the gravitational flow of irrigated
water.
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Using the structural measurements, such as the canopy height, canopy size, the envelope of each
row, LAI, and porosity, among others, the water demand of the crop may be estimated. Generally,
larger canopies tend to require more water than smaller canopies with less leaf area [116,157]. Using
the temporal measurement of the plant’s 3D attributes, the vigour can be computed. Monitoring crop
vigour over the season and over subsequent years can provide an indication of its health and
performance, e.g., yield, within an irrigation zone. Canopy structure metrics are closely related to
horticultural tree growth and provide strong indicators of water consumption, whereby canopy size
can be used to determine its water requirements [234]. Other 3D attributes, such as the crown
perimeter, width, height, area, and leaf density, have been shown to enable improved pruning of
horticultural plants [116,119].

LAI can be estimated using the 3D attributes obtained from remote sensing [114,157,201],
whereby, higher LAI is equivalent to more leaf layers, implying greater total leaf area and,
consequently, canopy transpiration. Leaf density, LAl and exposed leaf area of a crop drive its water
requirement and productivity [235-237]. Knowledge of field attributes, such as row and plant
spacing, may assist in inter-row surface energy balance to determine the irrigation need of the plant
[238]. Combining the structural properties with spectral VIs provide an estimation of biomass [239],
which can serve as another indicator of the plant’s water requirements. Although physiological
attributes have been used to understand plant water status and its spatial variability, they have not
been directly applied to make quantitative decisions on irrigation.

4.4.6. Evapotranspiration

The estimation of ET via remote sensing, numerical modelling, and empirical methods have
been extensively studied and reviewed in the literature [240-247]. These models are based on either
surface energy balance (SEB), Penman-Monteith (PM), Maximum entropy production (MEP), water
balance, water-carbon linkage, or empirical relationships.

SEB models are based on a surface energy budget in which the latent heat flux is estimated as a
residual of the net radiation, soil heat flux, and sensible heat flux. The models are either one-source
(canopy and soil treated as a single surface for the estimation of sensible heat flux) or two-source
(canopy and soil surfaces treated separately). Improvements over the original one-source SEB models
were in the form of Surface Energy Balance Algorithm for Land (SEBAL) algorithm [248,249] and
Mapping EvapoTranspiration with high Resolution and Internalized Calibration (METRIC) [249,250].
SEBAL offers a simplified approach to collect ET data at both local and regional scales thereby
increasing the spatial scope, while METRIC uses the same (SEBAL) technique but auto-calibrates the
model using hourly ground-based reference ET (ET:) data [251]. As such, these and other (e.g., MEP)
models rely on accurate measurements of surface (e.g., canopy) and air temperatures, which can be
erroneous under non-ideal conditions, e.g., cloudy days. There is also a reliance on ground-based
sensors to capture ambient air temperatures required by the model.

Among the existing methods, FAO’s PM is the most widely adopted model to estimate reference
ET (ETret or ETo) [252]. The PM method uses incident and reflected solar radiation, emitted thermal
radiation, air temperature, wind speed, and vapour pressure to calculate ETo [253]. Remote sensing
provides a cost-effective method to estimate the ETo at regional to global scales [241] by estimating
reflected solar and emitted thermal radiation. One of the advantages of using the PM approach is that
it is parametrised using micrometeorological data easily obtained from ground-based automatic
weather stations. However, PM suffers from the drawback that canopy transpiration is not dynamic
as influenced by soil moisture availability via stomatal regulation [241]. From a practical standpoint,
PM-derived ETo estimates are used in conjunction with crop factors or crop coefficients (kc), which
are closely related to the light interception of the canopy [254].

Crop evapotranspiration (ET.) is defined as the product of kc and ETo. In the absence of accurate
ETc measurements, k. is an easy and practical means of getting reliable estimates of ET. using ETo
[255]. In this regard, studies have focused on the use of remote sensing to study spatial variability in
keand ET<[101,256-258]. Thermal and NIR imagery can be used to compute kc and ETc as transpiration
rate is closely related to canopy temperature [259-261] and kc has been shown to correlate with canopy
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reflectance [101,255]. Various thermal indices, such as CWSI, canopy temperature ratio, canopy
temperature above non-stressed, and canopy temperature above canopy threshold, can be used to
estimate ETc, where CWSI- based ET. was found to be the most accurate [24].

ET at a larger scale is typically estimated based on satellite remote sensing. The temporal
resolution of satellites is, however, low and inadequate for horticultural applications, such as
irrigation scheduling (e.g., Landsat has a 16-day revisit cycle). In contrast, high temporal resolution
satellites are coarse in spatial resolution for field-scale observations [25]. The daily or even
instantaneous estimation of ETe at the field scale is crucial for irrigation scheduling and is expected
to have great application prospects in the future [240,259,262,263]. In this regard, the future direction
of satellite-based ET estimates may focus on temporal downscaling either by extrapolation of
instantaneous measurement [264], interpolation between two successive observations [201], data
fusion of multiple satellites [25,260], and spatial downscaling using multiple satellites [265-268]. An
example of early satellite-based remote sensing for ET is the MODIS Global Evapotranspiration
Project (MOD16), which was established in 1999 to provide daily estimates of global terrestrial
evapotranspiration using data acquired from a pair of NASA satellites in conjunction with Algorithm
Theoretical Based Documents (ATBDs) [269]. These estimates correlated well with ground-based
eddy covariance flux tower estimates of ET despite differences in the uncertainties associated with
each of these techniques.

UASs are being increasingly utilised to acquire multi-spectral and thermal imagery to compute
ET at an unprecedented spatial resolution [270,271]. Using high-resolution images, filtering the
shadowed-pixel is possible, which showed significant improvement in the estimation of ET in
grapevine [101]. Using high-resolution thermal and/or multispectral imagery, ET has been derived
for horticultural crops, such as grapevines [270] and olives [271]. The seasonal monitoring of ET. at
high spatial and temporal resolutions is of high importance for precision irrigation of horticultural
crops in the future [259].

5. Case Studies on the Use of Remote Sensing for Crop Water Stress Detection

The increasing prevalence of UAS along with low-cost camera systems has brought about much
interest in the characterisation of crop water status/stress during the growing season to inform
orchard or farm management decisions, in particular, irrigation scheduling [272,273]. Traditional
methodologies to assess crop water stress are constrained by limitations relating to large farm sizes
and accompanying spatial variability, high labour costs to collect data, and access to instrumentation
that is both inexpensive and portable [272]. The benefits of precision agriculture [274], including
through precision irrigation practices [1], result in higher production efficiencies and economic
returns through site-specific crop management [275,276]. This approach has motivated the use of
high-resolution imagery acquired from remote sensing to identify irrigation zones [99,277]. The first
horticultural applications of UAS platforms for crop water status measurement were in orange and
peach orchards where both thermal and multispectral-derived Vs, specifically the PRI, were shown
to be well-correlated to crop water status [102]. Here, we explore the use of remote sensing and
accompanying image acquisition platforms to characterise the spatial and temporal patterns of the
water status of two economically important horticultural crops, grapevine and almond.

5.1. Grapevine (Vitis spp.)

The characterisation of spatial variability in vine water status in a vineyard provides valuable
guidance on irrigation scheduling decisions [82], and this spatial variability can be efficiently
characterised by the use of remote sensing platforms [29]. The first use of remote sensing in vineyards
for crop water stress detection was using manned aircraft flown over an irrigated vineyard in
Hanwood (NSW) Australia where CWSI was mapped at a spatial resolution of 10 cm [278].
Subsequently, UAS platforms began to be used in vineyards for vine water stress characterisation.
Early work in this crop used a fuel-based helicopter with a 29 cc engine and equipped with thermal
(Thermovision A40M) and multispectral (Tetracam MCA-6) camera systems [102]. The study
observed strong (inverse) relationships between (T. — Ta) and gs. A related study showed strong
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correlations between thermal and multispectral VIs, and traditional, ground-based measures of water
status, such as Wiat and gs [182]. In this study, normalised PRI was shown to have correlation
coefficients exceeding 0.8 versus both Wit and gs, indicating that remotely-sensed VIs can be reliable
indicators of vine water status. Thermal indices, such as (Tc — Ta) and CWSI, were also well-correlated
to Wiear and g at specific times of the day. The use of thermal indices, such as CWSI or I, requires
reference temperatures (Twet, Tary) or non-water stressed baselines (NWSB) [279]. Due to the difficulty
of obtaining reference temperatures or NWSB using remote sensing, some authors have used the
minimum temperature found from all canopy pixels as Twet [199], and Ta + 5 °C as Tary [213,280].
NWSB is typically obtained from well-watered canopies, measuring (T. — Tx) under a range of vapour
pressure deficit conditions [279]. Thermal water stress indices have also shown to be useful to
distinguish between water use strategies of different grapevine cultivars [83,281], which is useful for
customising irrigation scheduling based on the specific water needs of a given cultivar. More recently,
studies have used UAS-based multispectral-based VIs to train an artificial neural network (ANN)
models to predict spatial patterns of Wstem [84,282]. Using UAS-based multispectral data, the authors
showed that ANN estimated Wsem with higher accuracy (RMSE lower than 0.15 MPa) as compared
to the conventional multispectral indices based estimation (RMSE over 0.32 MPa).

5.2. Almond (Prunus Dulcis)

Almonds are perennial nut trees grown in semi-arid climates and are reliant on irrigation
applications. Their water requirements are relatively high, with seasonal ET. exceeding 1000 mm
[283]. The requirement for prudent irrigation management in the face of decreased water availability
is critical for maintaining tree productivity, yield, and nut quality [284]. Towards this goal, UAS-
based remote sensing has been used to characterise the spatial patterns of tree water status in almond
orchards. A UAS-based thermal camera was used to acquire tree the crown temperature data from a
California almond orchard; this temperature was used to determine the temperature difference
between crown and air (T. — Ta) and compared to shaded leaf water potential (W) [92]. The study
found a strong negative correlation (R?=0.72) between (T — Ta) and Ws. The same authors conducted
a follow on study in Spain on several fruit tree species including almond. The negative relationship
(slope and offset) between (T — Ta) and Wstem was observed to vary based on the time of observation;
morning measurements had weak relationships, whereas afternoon measurements had stronger
relationships [99]. Their proposed methodology allowed for the spatial characterisation of orchard
water status on a single-tree basis, demonstrating the utility of UAS-based crop water stress data.
Beyond the characterisation of crop water stress for irrigation scheduling, there is an opportunity to
use this data to quantify the economic impact at a spatial level.

6. Future Prospective and Gaps in the Knowledge

Precision irrigation is a promising approach to increase farm water use efficiency for sustainable
production, including for horticultural crops [3,5,9,10,274,285]. It is envisioned that the future of
precision irrigation will incorporate UAS, manned aircraft, and satellite-based remote sensing
platforms alongside ground-based proximal sensors coupled with wireless sensor networks. The
automation of UAS technology will continue to develop further to a point that even novice users can
adopt the technology with ease. It is also expected that the data processing pipeline of remote sensing
images will become automated to be “fit for purpose’ for crop water status measurements. The ideal
solution may lie in the use of satellites (or sometimes manned aircraft) for regional estimation and
planning [55,260], UAS for seasonal monitoring and zoning [32,100,197,286], proximal sensors for
continuous measurement [287], and artificial intelligence to derive decision-ready products [84,282]
that can be used for making irrigation scheduling decisions [31,288-295]. Continued technological
developments in this space will enable growers to acquire actionable data with ease, and eventually
transition towards semi-automated or fully-automated irrigation applications.

Remote sensing and current irrigation application technologies are limited in temporal and
spatial resolution, respectively. Although UAS technology can deliver sub-plant level spatially
explicit information of water status, the size of the management block is much coarser, typically over
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10 m. Hence, further improvements in variable rate application technologies, e.g., boom sprayers, or
zoned drip irrigation, are required to fully exploit high-resolution UAS measurements. Nonetheless,
the required resolution of remote sensing should be guided by the underlying spatial variability of
the crop. For fields with relatively lower spatial variability, low/medium-resolution remote sensing
imagery may suffice for crop water status assessment [278,296,297].

Remote sensing provides an indirect estimate of plant water status using the regression-based
approach through several calculated reflectance indices. In comparison, physical and mechanistic
models, e.g., radiative transfer models and energy balance models, incorporate both direct and
indirect measures of the canopy, therefore establishing a basis for differences in plant water status.
Using a similar approach, predictions of crop water status using regression-based remote sensing
models can be improved by incorporating some direct auxiliary variables.

Further developments in thermal remote sensing are also expected, specifically, the advent of
new thermal and hybrid thermal-multispectral water status/stress indices that are more sensitive to
canopy transpiration. The most widely-adopted thermal index, CWS], is an instantaneous measure
that is normalised to local weather conditions and influenced by genotype and phenotype. For
example, the relationship between CWSI and crop water status is influenced by environmental
conditions (e.g., high incident radiation and low humidity vs low incident radiation and high
humidity) and phenological stage [197,214,298]. As a result, corresponding ground-based
measurements are required for each temporal remote measurement to determine the correlation with
water status. Hence, temporal assessments of water status using thermal cameras will require the
incorporation of meteorological data along with the thermal response using novel indices.

In the area of satellite remote sensing, we foresee further developments on temporal
downscaling to achieve daily measurements. A higher temporal resolution may be achieved by
fusion of multiple satellite observations, such as freely available Landsat and Sentinel. Further
reductions of temporal resolution will require interpolation between two successive observations.
Furthermore, temporal models of water status could be developed to assist the interpolation to
eventually satisfy the requirements for irrigation scheduling [25,201,263]. The continued
advancement and greater availability of Nanosat/Cubesat may provide an alternate method to
capture high-resolution data at a higher a greater temporal resolution, which can be suitable to study
the water status of horticultural crops [299-301].

Crop water status is a complex phenomenon, which can be interpreted with respect to a number
of variables. These variables can include spectral response, thermal response, meteorological data,
3D attributes of the canopy, and macrostructure of the block (farm). Clearly, there is an opportunity
for a multi-disciplinary approach, potentially incorporating artificial intelligence techniques which
incorporate the aforementioned variables to provide a robust estimation of crop water status
[84,141,282,302,303]. Furthermore, with machine learning algorithms, hyperspectral remote sensing
will provide a wealth of data to estimate crop water status. A quantitative product, such as SIF,
derived from hyperspectral data will have the potential for direct quantification of water stress
[204,205,304]. In this regard, the upcoming FLEX satellite mission [305,306] and recent advances in
aerial spectroradiometry [109,132,137,307-310] dedicated for observation of SIF may be unique and
powerful tools for high-value horticultural crops.

Multi-temporal images represent an excellent resource for seasonal monitoring of changes in
crop water status. Five to six temporal points of data acquisition at critical phenological stages of crop
development have been recommended for irrigation scheduling [31,32]. However, for semi-arid or
arid regions, irrigation is typically required multiple times per week. Acquisition and post-processing
of remote sensing data for actionable products multiple times a week is currently logistically
unfeasible. The fusion of UAS-based remote sensing data, continuous ground-based proximal or
direct sensors, including weather station data, can potentially inform daily estimates of water status
at canopy level. This approach will require predictive models, such as those based on machine
learning algorithms, to estimate the current and future water status of the crop. Eventually, growers
would benefit from the knowledge of crop water requirements for the determination of seasonal
irrigation requirements to sustainably farm into the future.
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One vision for the future of precision irrigation is in automated pipelines to explicitly manage
irrigation water at the sub-block level. This automated pipeline would likely include remote and
proximal data acquisition and processing, prediction and interpretation of crop water status and
requirements, and subsequently, control of irrigation systems. Recent rapid developments in cloud
computing and wireless technology could assist in the quasi-real-time processing of the remote
sensing data soon after acquisition [311-313]. Eventually, automation and computational power will
merge to develop smart technology in which artificial intelligence uses real-time data analysis for
diagnosis and decision-making. Growers of the future will be able to take advantage of precise
irrigation recommendations using information sourced from a fleet of UAS that map large farm
blocks on a daily schedule, continuous ground-based proximal and direct sensors, and weather
stations. This data can be stored on and accessed from the cloud almost instantaneously, used in
conjunction with post-processing algorithms for decision-making on optimised irrigation
applications [311,314].

7. Conclusions

This paper provides a comprehensive review of the use of remote sensing to determine the water
status of horticultural crops. One of our objectives was to survey the range of remote sensing tools
available for irrigation decision-making. Earth observation satellite systems possess the required
bands to study the water status of vegetation and soil. Satellites are more suitable for scouting,
planning, and management of irrigation applications that involve large areas, and where data
acquisition is not time-constrained. Manned aircraft are sparingly used in horticultural applications
due to the cost, logistics, and specific expertise needed for the operation of the platform. UAS-based
remote sensing provides flexibility in spatial resolution (crop level observation achievable), coverage
(over 25 ha achievable in a single flight), spectral bands, as well as temporal revisit. Routine
monitoring of horticultural crops for water status characterisation is, therefore, best performed using
a UAS platform. We envision a future for precision irrigation where satellites are used for planning,
and UAS used in conjunction with a network of ground-based sensors to achieve actionable products
on a timely basis.

The plant’s instantaneous response to water stress can be captured using thermal cameras (via
indices, such as CWSI) and potentially narrow-band hyperspectral sensors (via, for example, SIF),
making them suitable to draw quantifiable decisions with regard to irrigation scheduling. Broadband
multispectral and RGB cameras capture the non-instantaneous water status of crops, making them
suitable for general assessment of crop water status. Integrated use of thermal and multispectral
imagery may be the simplest yet effective sensor combinations to capture the overall as well as
instantaneous water status of the plant. With regard to irrigation scheduling, further developments
are required to establish crop-specific thresholds of remotely-sensed indices to decide when and how
much to irrigate.
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Abstract: Crop water status and irrigation requirements are of great importance to the horticultural
industry due to changing climatic conditions leading to high evaporative demands, drought and
water scarcity in semi-arid and arid regions worldwide. Irrigation scheduling strategies based on
evapotranspiration (ET), such as regulated deficit irrigation, requires the estimation of seasonal
crop coefficients (kc). The ET-driven irrigation decisions for grapevines rely on the sampling of
several k. values from each irrigation zone. Here, we present an unmanned aerial vehicle (UAV)-
based technique to estimate k. at the single vine level in order to capture the spatial variability
of water requirements in a commercial vineyard located in South Australia. A UAV carrying a
multispectral sensor is used to extract the spectral, as well as the structural, information of Cabernet
Sauvignon grapevines. The spectral and structural information, acquired at the various phenological
stages of the vine through two seasons, is used to model k. using univariate (simple linear), mul-
tivariate (generalised linear and additive) and machine learning (convolution neural network and
random forest) model frameworks. The structural information (e.g., canopy top view area) had the
strongest correlation with k. throughout the season (p < 0.001; Pearson R = 0.56), while the spectral
indices (e.g., normalised indices) turned less-sensitive post véraison—the onset of ripening in grapes.
Combining structural and spectral information improved the model’s performance. Among the
investigated predictive models, the random forest predicted k. with the highest accuracy (R?: 0.675,
root mean square error: 0.062, and mean absolute error: 0.047). This UAV-based approach improves
the precision of irrigation by capturing the spatial variability of k. within a vineyard. Combined with
an energy balance model, the water needs of a vineyard can be computed on a weekly or sub-weekly
basis for precision irrigation. The UAV-based characterisation of k. can further enhance the water
management and irrigation zoning by matching the infrastructure with the spatial variability of the

irrigation demand.

Keywords: UAV; UAS; drone; precision irrigation; remote sensing; spatial variability; random forest

1. Introduction

Water availability to horticultural crops in Australia is highly variable from season-
to-season due to variable climatic conditions including evapotranspiration and precipita-
tion patterns, extreme weather events, for example, heatwaves, and competing demand
for freshwater. Climatic conditions are expected to deteriorate due to variability in the
Indian Ocean Dipole, which is the key driver of ENSO outlook and the Australian cli-
mate [1,2]. The persistent drier conditions, combined with freshwater scarcities, will require
a wider adaptation of precision irrigation to sustain the horticulture and agriculture of
Australia [3,4]. As such, the horticultural industry needs to move from over-irrigation
to stress management practices by adopting evidence-based precision irrigation [5-7].
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One widely adopted irrigation strategy is evapotranspiration (ET)-based deficit irrigation,
where a fraction of crop water requirement is replenished [8,9]. To improve the precision of
the ET-based irrigation, accurate information of the crop coefficient (k) is required [10]. k¢
is a highly variable parameter affected by the canopy structure, training system, pruning
practices and vegetative growth. Within the same management vineyard block, spatial
variation still exists due to the variation in resource availability, soil rooting depth, vine
disease and terrain architecture. Due to this high spatiotemporal variability in the k, data,
such as those from remote sensing, are required to make the irrigation decisions. Further-
more, mixed pixels arising from the inter-row bare/vegetated area specific to horticulture
demands higher spatial resolution data, which can be achieved with an unmanned aerial
vehicle (UAV) [6]. Unmanned aerial vehicle (UAV) remote sensing offers the potential
to characterise ET [11,12], k. and the irrigation needs spatially, as well as on a canopy
level [13-15]. Canopy level irrigation requirements can be a basis on which to improve the
precision of irrigation and irrigation scheduling by matching the timing, volume and loca-
tion of irrigation with the crop water needs [16-19]. This, in turn, can sustain agriculture
by optimising farm and crop water use efficiency and industry profitability.

The direct measurement of crop evapotranspiration (ET.) can be made by lysimeter,
eddy covariance, Bowen ratio and soil water balance methods [20,21]. These methods
provide an accurate account of vegetation water balance; however, they are expensive,
cumbersome, and provide low spatial representativeness of measurements. In the absence
of direct ET. measurements, an indirect estimation can be made from numerical modelling,
empirical methods, and remote sensing, which use agronomic, biophysical, and meteoro-
logical elements as inputs [22-24]. The FAO Penman-Monteith method is the most widely
adopted empirical model for estimating the reference ET (also known as ET.¢ or ETy) [10].
ETy, when coupled with k. (single or dual), yields ET., which is often the basis for deficit
irrigation [25-29].

The similarity of k. and the satellite-derived vegetation indices (VIs) resulted in the
use of low-cost remote sensing technology for estimating k. for a range of spatiotemporal
scales [30-32]. The satellite-based VIs proxied the photosynthetically active vegetation
cover, which in turn can be used to estimate both k. and ET.. For example, sources such
as IrriSAT provide k. estimates at 30 m resolution using a linear model based on the
normalised difference vegetation index (NDVI) [33-36]. In similar studies, k. has been
estimated using several spectral/thermal indices such as NDVI and crop water stress index
(CWESI) [37-39]. Similarly, structural properties ,such as canopy size, canopy area, leaf area
index (LAI), and shaded area [40—43], have been utilised to estimate k.. Using multiview
stereo and structure-from-motion (SfM) techniques, UAV remote sensing can capture the
3D structure of the vegetation as well as the spectral bands [44,45]. Structural information
and spectral reflectance on their own were used to estimate k. from the aforementioned
studies; however, combining the spectral and structural information could present an
opportunity for the robust and precise estimation of k.. Moreover, UAV-based estimation
of k. is a novel concept for grapevines, which, in the future, could potentially be used in
lieu of field sampling.

In this paper, we present the UAV-based multispectral remote sensing technique for
spatial estimation of the k. of field-grown grapevines. Specifically, we combine the spectral
reflectance and structural features of the grapevine in various modelling frameworks to
provide an estimate of k.. A workflow for canopy-level remote sensing data extraction, as
well as modelling of k., is presented. Various predictive models (linear, non-linear and ma-
chine learning) are investigated for the canopy-specific estimation of k.. This fine-scale
canopy level k. measurement can be used to estimate the canopy scale or irrigation zone
level water requirements. k. maps, which can be used to determine the spatial irrigation
requirements, are generated by the best performing model for Cabernet Sauvignon at
Wynns Coonawarra Estate, Coonawarra, SA, Australia.
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2. Materials and Methods
2.1. Test Site

The test sites for this study are located in rural South Australia in the Coonawarra
region (see Figure 1). Coonawarra is known for its premium quality red grape/wine
attributed to the porous terrarossa soil, which generates moderate water stress [46,47]. The
Cabernet Sauvignon vineyard at the Wynns Coonawarra Estate (37°17'8.5"'S 140°49'37.9"E)
at Coonawarra, which was planted over 17.3 ha in 1988, was used in this study. Two
experimental blocks (each sized approximately 1 ha) were delineated at the two ends
of the 700 m long row of the vineyard, which was planted in the east-west orientation.
The grapevines had a bilateral cordon with a sprawling training system typical for the
area. Conventional vineyard floor, canopy management and integrated pest management
practices were conducted in this vineyard.

Adelaide
)

3
The wine region of

South Australia, Australia Coonawarra, SA, AUS The vineyard blocks used in this study

Figure 1. Two Cabernet Sauvignon vineyards at the Wynns Coonawarra Estate, Coonawarra, SA,
Australia used in this study of crop coefficient and irrigation requirements.

2.2. Scientific Payload for Remote Sensing

A hexacopter multirotor (DJI Matrice 600 Pro, Da-Jiang Innovations Science and
Technology Co., Ltd., Shenzhen, China) was deployed, which offered over 12 min of flight
time and over 5 kg of scientific payload capability. The UAV carried trifecta cameras
including a multispectral placed in a Gimbal (DJI Ronin, Da-Jiang Innovations Science
and Technology Co., Ltd., Shenzhen, China). The gimbal allowed a stable platform for
the cameras in order to acquire the images of the vines. The multispectral camera was
equipped with a global navigation satellite system antenna to assist with the georeferencing
and a downwelling light sensor (DLS) for reflectance calibration.

The RedEdge-MX captured five discrete images in blue, green, red, rededge and
near infrared electromagnetic regions with bandwidths of 20 nm, 20 nm, 10 nm, 10 nm
and 40 nm respectively. The bands had a centre wavelength of 475 nm, 560 nm, 668 nm,
717 nm and 840 nm, respectively. The camera had a field of view of 47.9 x 36.9 and
a focal length of 5.4 mm. Each of the five discrete charge-coupled device chips had
1280 x 960 pixels with a radiometric resolution of 14 bit. The aerial images, captured from
30 m altitude, resulted in ground coverage of approximately 26.7 m x 20.0 m with a spatial
resolution of 2.1 cm. This level of spatial detail is considered sufficient for single plant-level
data acquisition, which resulted in several thousand multispectral pixels representing a
single vine canopy.

A custom-built flexible solar panel (also known as ‘Paso Panel’), sized 30 cmx 150 cm,
was used for the ground sampling of k. following an empirical formula [40]. Canopy LAI
measurement was taken using an AccuPAR LP-80 Ceptometer (Meter Group, Inc., Pullman,
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WA, USA). Four greyscaled spectral panels were deployed during each flight to calibrate
the canopy reflectance.

2.3. Data Acquisition

This study is comprised of the UAV-based and ground-based data collected during
two grape growing seasons—2018/19 and 2019/20—and at five timepoints during the two
seasons. The acquisition timepoints included early- to late-season, which captured a wider
range of k. values. Early season data include acquisition at EL-19 (flowering, 2019/20),
and EL-31 (pea-size, 2019/20). The mid-season data were acquired around véraison at
EL-34 (onset of véraison, 2018/19) and EL-35 (véraison 2019/20). Similarly, late season
data were captured at EL-37 (pre-harvest, 2018/19) [48].

2.3.1. Aerial Data Acquisition

The UAV flight planning and multispectral image acquisition protocol were fixed
for the entire two seasons of the field campaign. The UAV was flown at a height of 30 m
above the ground at a speed of 3 ms~! and in a regular mapping pattern flight, while the
camera captured a multispectral image (5 band discrete images) every second. The flight
parameter and camera setting together resulted in over 80% forward and side overlap,
which is necessary for SfM processing [49,50].

Four greyscaled spectral panels (white, light-grey, dark-grey and black) were devel-
oped using a combination of barium sulphate and white paint [51]. These panels were
deployed during each flight for atmospheric correction and reflectance calibration purposes.
The MicaSence calibration panel and DLS were not utilised for four reasons: (a) the user
manual recommended that the sampling method of the calibration panel was not feasible
for the heavy UAV used in this study [52]; (b) the DLS without a cosine corrector could
have directional variation [53,54]; (c) the use of four greyscaled spectral panels instead
of one allowed more control during the empirical line correction; and (d) capturing the
reflectance data of both plants and spectral panels from the same altitude potentially better
corrected the atmospheric effects.

2.3.2. Reference Ground Data Acquisition

The ground reference data included the in-field k. measurement using the Paso
Panel. The Paso Panel measured the output current at full sun and when placed under
the canopy. During the measurement, the panel was placed orthogonally to the cordon,
approximately 10-15 cm from the ground. The final adjustment was made to make sure
that the panel was level, that the vine shadow was approximately in the middle of the panel,
and that no shadow was cast to the panel from the crew. For each vine, two under-vine
measurements were made, one on each cordon. After measuring every four vines, the full
sun measurement was repeated to accommodate for any changes in incident solar radiation.
The k. was computed analytically using Equation (1) [40].

L I
=17x L1--=-)-0. 1
ke XWr( Is) 0.008, (1)

where L, is the length of the Paso Panel, W, is the row spacing, I; and I; are the current
readings made under full sun and the canopy shade, respectively.

Thirty-two ground references were measured at both ends of the vineyard per time-
point (Figure 2). Note that this dataset is a part of a bigger irrigation trial. The irrigation
trial tested several irrigation strategies using environmental, soil and plant-based sensors
to schedule irrigation. The average seasonal irrigation for the block was approximately
0.5 ML ha~! for the vine density of 1700 vines ha™!. In the trial, the investigated irrigation
strategies were limited to specific rows, resulting in the ground sampling vines for this
k. study being limited to specific rows throughout the season. Lacking the spatial distri-
bution presented a risk of ground-based k. values being clustered within a tight range.
However, a wide range of k. values was observed due to the distribution of sampling
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timepoints (early-, mid- and late-season), multiple seasons, and the different irrigation
treatment-induced physiological responses.

LTS R e
7 “’"”"‘mm;mp
BB

Figure 2. The ground data are sampled from 64 vines (32 on the east and 32 on the west end) of the
vineyard (east end shown) per timepoint (EL-31 shown). Highlighted are the measurement vines
that were measured throughout the two seasons.

2.4. Data Processing
2.4.1. Extraction of Canopy Level Data

The multispectral images were mosaicked using standard SfM workflow in Agisoft
Metashape (Agisoft LLC, St. Petersburg, Russia) Professional Version 1.6.2. The products
generated using the software included the digital elevation model (DEM), the digital
surface model (DSM) and the orthomosaic, all expressed in projected coordinate frame
MGA zone 54 (EPSG:28354). The temporal orthomosaics were processed using a custom-
developed Python script routine that performed the radiometric/atmospheric calibration,
masking, and data extraction from all individual canopies.

The radiometric/atmospheric calibration of the temporal orthomosaics was performed
with respect to the reflectance of the four greyscaled spectral panels that were deployed
during each flight (Figure 3). Using the reflectance of the four panels at five bands, the or-
thomosaics were converted to the reflectance by empirical line correction [55,56]. As the
four greyscaled panels were used regularly in the field condition, the panels could degrade
due to repeated handling, hence the panels were also calibrated regularly. The four panels
were calibrated twice each season at the start and at the end (e.g., before budburst and
after harvest) using an ASD HandHeld 2 spectroradiometer (Malvern Panalytical Ltd.,
Malvern, UK) and a calibrated Spectralon. The HandHeld 2 acquired the spectral signature
of the panels within the spectral range of 325-1075 nm with a spectral resolution of 3 nm.
The sampled spectral profile of the four panels was resampled using a Gaussian model to
match the wavelength centre and wavelength bandwidth of the RedEdge-MX sensor.
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Figure 3. The four greyscaled spectral panels (a) were calibrated twice each season—Dbefore the start
and after the end of the season. The reflectance curve (b) shows the sample reflectance of the four
panels acquired using the ASD handheld spectroradiometer and the calibrated spectralon.

A canopy height mask and a normalised difference vegetation index (NDVI) mask

were generated for each timepoint to mask out the non-canopy pixels including the inter-

row, wooden post, and so forth. The canopy height mask was created by offsetting the
DEM and DSM and applying a global threshold of 0.7 m (average height of the canopies
was 1.7 m). The NDVI mask was created by computing the NDVI and a global threshold of
0.3 (average NDVI of the canopies was 0.6). The combination of the two masks effectively
removed the inter-row vegetation, background soil and wooden posts, as well as diseased
vines with significantly smaller canopies. Using the macrostructure information of the
vineyard (i.e., vine spacing and row spacing), a spatial grid was created using QGIS version
3.16.2 and was approximately aligned with the vines—effectively placing a single canopy
within each polygon of the grid. Each polygon of the grid was separated with a buffer of
20 cm to limit the crossover of the canopy to the adjacent polygon. Using the buffered and
aligned grid over the masked orthomosaic, pure canopy data were extracted from every
single vine and written in the attribute table. The extracted data included the mean spectral
reflectance as well as canopy pixel count and height. Using the total pixels within a canopy,
various structural information was derived including canopy area (c_area), canopy width,
and canopy fraction cover within the ground area per vine (row spacing x vine spacing).
Using the reflectance of five bands, several spectral indices were computed. This structural
information and the spectral indices were then exported as a CSV file (see Figure 4).

Agisoft Metashape + Python script Python script

Multispectral images
NDVI mask

StM Orthomosaic Reflectance
A = e
> L‘ Atmospheric = = ::"-‘*&{i:
Agisoft — . = s
8 Metashape correction :‘%,
DEM > Canopy height mask
—t—.
P e
% Int
nter-row
m 7] removal
%
== l
=
Pure canopy

QGls Spatial grid

g Zonal Statistics

Vine data
(includes structural properties and Vls of each vine)

Figure 4. The workflow developed to process the UAV-based images and extract the canopy-specific

structural information and spectral indices.
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2.4.2. Spectral and Structural Feature Selection

This study incorporated numerous spectral features computed using the blue, green,
red, rededge and near infrared bands (e.g., indices available at [57-60]), structural features
(e.g., available at [44,61]) and canopy fraction cover [62], as well as a number of cus-
tom/adopted features (e.g., cummulative NDVI, canopy width, canopy area and canopy
volume above cordon). A correlation analysis of each spectral and structural feature
was performed with respect to the ground measured k. for all the timepoints combined.
The features that revealed no significant (Pearson test, p-value > 0.05) correlation with
k. were discarded for the modelling. Furthermore, the features with a high degree of
collinearity (correlation coefficient > 0.95) were refined to select only one with the highest
significance or correlation coefficient. These two steps of feature filtering eliminated most
of the spectral/structural features that were initially computed for consideration. The fea-
tures retained after the two elimination processes were taken as an input for developing k.
prediction models (see Table 1).

Table 1. The list of spectral and structural features retained after the feature filtering processes, i.e., the removal of non-

significant and highly collinear features. Note: R, G, and NIR represent the spectral bands red, green and near infrared,

respectively. n and r represent the number of pure-canopy pixels and the spatial resolution of the pixels, respectively.

Indices Abbreviation Formula Reference
Greenness index GI % [58,59]
Normalised difference vegetation index NDVI %fﬁ;ﬁ [60,63]
Visible-band difference vegetation index VDVI % [64,65]
Enhanced NDVI #2 ENDVI2 AR modified [66,67]
Enhanced NDVI #3 ENDVI3 N modified [66,67]
Plant height p_height DEM-DSM [44,61]
Cumulative NDVI cum_NDVI Y NDVI

Canopy top-view area c_area nxr

2.4.3. Modelling

Within the five timepoints of the two seasons, a total of 320 datapoints were acquired,
which included remotely sensed spectral /structural features and the corresponding ground-
reference k.. Outliers in the dataset were investigated and removed using Cook’s distance
(2/n), which reduced the number of datapoints to 231 [68,69]. The spectral/structural
features synthesised in Table 1 were used to develop predictive models of k.. The training
and testing datasets were split randomly in the ratio of 3:1 (173 training and 58 testing
datapoints). Using the training dataset and the leave-one-out cross-validation, k. prediction
models were developed. This leave-one-out approach of fit-control recursively develops
a model and validates on one random datapoint until all the datapoints are used for
validation [70]. Various models, such as the simple linear model (SLM), generalised
linear model (GLM), generalised additive model (GAM), neural network model (NNM)
and random forest model (RFM) were developed using the caret package in R programming
languages (Version 4.0.4, RStudio Version 1.4.1106) [71-73]. The final refined model was
tested on the testing dataset (58 datapoints). The model performance was evaluated using
indicators including R squared (R?), Root Mean Square Error (RMSE) and mean absolute
error (MAE).

3. Results

The grape growing season in the Coonawarra region starts relatively late with bud-
burst in late October, reaching flowering approximately in December, pea-sized berries in
January, véraison in February and harvest in April. The cumulative growing degree days
for the two seasons are computed by integrating the local weather station data (Australian
Government, Bureau of Meteorology, weather station number 026091, Coonawarra, SA,
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Australia) starting from the budbrust up to the grape harvest (see Figure 5). The field
data acquisition timepoints (3 timepoints in the 2018/19 season and 2 timepoints in the
2019/20 season) and the corresponding phenological stage of the grapevine are shown in
the figure. In comparison, the 2019/20 season was cooler with fewer heatwaves and less
extreme temperatures.

1500

——2018/19 season ===2019/20 season

1200

EL-35 (post-veraison)
2020-02-24

-7 | EL-37 (pre-harvest)
,If{ 2019-03-20
900

EL-31 (Pea size)

Cumulative growing degree days (Celsius)

2020-01-06 . EL-34 (Veraison onset)
4 2019-02-15
600
EL- 19 (flowering)
2019-12-09
300
0
1 22 43 64 85 106 127 148 169 190

Number of days after budburst

Figure 5. The cumulative growing degree days for the Cabernet Sauvignon at the Wynns Coonawarra
Estate, Coonawarra for the two seasons, 2018/19 and 2019/20. The data acquisition stages for both
seasons are shown.

The evolution of k¢, along with the most significant spectral /structural features, are
presented in Figure 6. The displayed features had the highest significance and correlation
coefficient with k.. The seasonal k. values followed the pattern, which was noted physically
and observed in the canopy LAI measurements, of rapid canopy growth until the véraison
and stability after that. The k. started at a mean value of 0.48 at the start of the season
and steadily increased to a mean value of 0.67 by the end of the season. The trends of
NDVI and ENDVI2 appear to be less sensitive to canopy growth, while the c_area was
the most sensitive, particularly in the early season between fruit set and pea-sized berries.
Between the pea size and véraison, all of the remote sensing temporal trends do not appear
to reflect the k. trend. Post véraison, all the indices show a strong agreement with each other
and reflect little to no changes in canopy development/growth. The decrease in spectral
indices post véraison may be reflecting the depletion of nitrogen in the vine, including
the leaves [74,75]. The seasonal evolution graph suggests that either the c_area alone or
a combination of c_area and spectral features could be the best predictors of k. at any
timepoint. The best performing model for each timepoint could incorporate the timepoint
specific data. However, this study assesses a holistic model to reduce the timepoint specific
bias due to the small sample size, as well as to provide a robust predictor that is not limited
by the growth stage of the plant.

Among various spectral indices and structural parameters (not listed exclusively
here), few of the features were selected for modelling purposes following the removal
of non-significant as well as collinear features. The correlogram in Figure 7 shows the
selected indices, their statistical significance and correlation coefficients with the response
variable, k.. The c_area had the strongest correlation with k. (highly significant and highest
correlation coefficient). Composite feature cumulative NDVI and spectral features NDVI
ENDVI2 were the second-tier features showing a strong correlation with k., while other
features, such as the greenness index (GI), ENDVI3, visible-band difference vegetation
index (VDVI) and plant height (p_height), had a weak but significant correlation.
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Figure 6. Seasonal evolution of the k. along with the highly correlated and statistically significant

spectral features, represented in the primary y-axis and canopy area (c_area) represented in the

second y-axis. The shaded band on the seasonal evolution plot represents the +1¢ around the mean.
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Figure 7. Correlogram showing the scatter plot, correlation coefficient values and statistical signifi-
cance (Pearson test: p-value < 0.05 as *, p-value < 0.01 as **, and p-value < 0.001 as ***) between the
selected features (spectral and structural) and the crop coefficient.

To develop k. models, the dataset (231 datapoints) was split into training and testing
on a ratio of 3:1. The training dataset was used to train the model while the testing
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dataset was used to access the performance accuracy. The leave-one-out cross-validation
approach ensured that a large number of datapoints (172) were available for each of the
model generations. The best univariate indicator of k. was the c_area, which performed
with reasonable accuracy (R% = 0.295, RMSE = 0.091, MAE = 0.076). Multidimensional
regression using all the features substantially improved the prediction accuracy (e.g., GLM)
with improved AIC (SLM AIC: —340.0, GLM AIC: —411.7). Further improvement in the
prediction was achieved using non-linear-multidimensional models (e.g., GAM with AIC of
—461.7) and machine learning models such as CNN (a 8-5-1 network with 51 weights) and
REM (ntree = 500, mtry = 3). While all the multidimensional models investigated used the
same input features (listed in Table 1, the features that ended up being important in all the
models were significantly different. For example, the REM, which performed the best, had
c_area as the most important feature whereas the CNN, which used cum_NDV]I, performed
relatively poorly. In addition to the leave-one-out, a k-fold cross-validation approach was
tested, which resulted in a similar trend in the model accuracy—RFM performing the best

of all the models evaluated in this study (see Table 2).

Table 2. Accuracy of various models used to predict the k. using leave-one-out fit-control. Note the accuracy metrics were
derived by applying the model to the unseen testing dataset. Note: AIC in the table heading is an abbreviation of the Akaike

information criterion.

Most Influential Features

Models R? RMSE MAE AIC
Generalised linear 0.528 0.074 0.061 —411.7 GI
Generalised additive 0.594 0.069 0.055 —461.7 c_area
Convolutional neural network 0.619 0.072 0.060 na cum_NDVI
0.675 0.062 0.047 na c_area

Random forest

The simple linear model provided the most straightforward model while the RFM
provided the most accurate model for estimating k.. The RFM model was used to further
predict spatial k. values at the vineyard scale at two key phenological stages of the vine
(Figure 8). Using the estimated k. values, along with the weather data (temperature,
humidity, wind speed), the spatial irrigation requirements of the vineyard were computed

on a per vine basis.
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Figure 8. The map of estimated k. values and at the early season ((left) pane, flowering stage, EL-19)

and late season ((right) pane, post véraison, EL-35) of Cabernet Sauvignon.

4. Discussion

There exist differences in mesoclimate between different sites and within the site
receiving uniform irrigation. For instance, the two sites used in this study received uniform
irrigation despite highly variable soil depth. This variability presents a significant challenge
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for irrigation management that could be partly overcome by adopting high-resolution
data capture. A significant advantage of UAV remote sensing in precision irrigation is the
unprecedented spatial details that can reveal spatial variability within a vineyard receiving
uniform irrigation. This detailed (canopy-specific) level of information is, however, not fully
exploitable, that is, canopy-specific irrigation management is not practicable. The current
irrigation management technology in vineyards generally has a fixed infrastructure, which
makes the spatial control of the irrigation unfeasible or costly to incorporate. A potential
benefit could lie in the improvement of the zoning of the vineyards such that zones
receiving uniform irrigation have reduced spatial variability [76]. Using spatial clustering,
irrigation zones can be set to minimise spatial variability whilst still maintaining economic
viability [77].

The k. is an evolving parameter that changes together with the development stage of
the crop, canopy cover and architecture, and transpiration [10,40]. As such, different crops
with different management practices will have a unique evolution of water requirements
and k. values throughout the various phenological stages [31,43,78]. Even for a single crop,
such as a grapevine, a single k. value may lead to over- or under-irrigation depending on
the time of the year. This has numerous implications for management. The availability
of a time series of k. maps will allow spatially explicit parameterisation of models for
irrigation management and this will facilitate improved realism in models (see [7] for a
recent review of models). Spatio-temporal estimates of k. will help with implementing
regulated deficit irrigation (RDI). A typical RDI regime necessitates a minimum of two
timepoints of k. values. The temporal evolution of k. seems to follow the thermal time
(GDD) graph; however, it requires further temporally-intensive data at multiple seasons
for verification. Such co-evolution of k. and GDD, if established, could require only a few
timepoints of k. determination that can be extrapolated temporally based on the evolution
of the thermal GDD.

This research could have limitations due to the study of just two seasons of data and
the lack of spatial distribution of ground reference. Two seasons of data were considered
sufficient as the investigated vines were mature and were managed using set management
practices, which resulted in minimal seasonality effect on the canopy structure and ar-
chitecture. However, there could still be some underlying seasonal variability requiring
further data acquisition. The spatial distribution of the ground reference was set by a
larger irrigation treatment study, which this research was a part of. The ground reference
measurement vines were selected based on the physiology of the plant from set rows to
minimise the inter-vine variability and to construct the irrigation system. As a result, only
the selected vines that were located in certain rows were measured. However, despite this
lack of spatial distribution, our dataset captured a wide extent of k. measurement values,
predominantly due to the data acquisition at early-, mid-, and late-season, as well as due to
the application of various irrigation treatments. Moreover, the UAV-estimated range of k.
values was equivalent to the ground-observed range of k. values.

The k. is generally measured on the ground from several representative samples
within each irrigation zone. This approach, however, does not capture the entire variability
within a field and the selection of samples can be subjective to the user. UAV-based
observation of the entire irrigation zone could provide a more unbiased and holistic view
of the vineyard. Moreover, the UAV-based k. estimation incorporates measurements from
the entire canopy while the k. measured on the ground using the Paso Panel incorporates
a section of the canopy. For instance, we sampled k. values once from each side of the
cordon. This sampling strategy is equivalent to the incorporation of 0.6 m out of 2.1 m of
the canopy cordon. As a result, the ground sampling is computed by observing less than
30% of the canopy foliage while the aerial sampling incorporates the entire canopy foliage.
Hence, some errors associated with the UAV-based modelling of k. could also be attributed
to the Paso Panel acquired ground data. The UAV-based k. values could, therefore, be
more robust than is expressed in the model performance results (Table 2).
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Preliminary economic calculations based on Australian standards, and excluding the
Research and Development cost, revealed that the UAV-based approach could be profitable
for the industry in the long run. Measuring on a small scale (e.g., 1 ha vineyard), the Paso
Panel approach costs approximately AU$20/vine/season considering the measurement
of 50 vines from the 1 ha at six timepoints throughout the season. The UAV-based ap-
proach costs approximately AU$5/vine/season considering the initial capital investment
and the measurement of 2000 vines from 1 ha at six timepoints. When considering a
larger vineyard, for example, 20 ha, the UAV-based approach was substantially cheaper
(AU$0.45/vine/season) while the Paso Panel approach cost remained approximately the
same. The total cost of the UAV-based approach was substantially high in the first year;
however, it becomes progressively cheaper on a per-vine-per-season basis. In subsequent
years, both the UAV and Paso Panel approaches had approximately similar year-on-year
running costs. Hence, following the initial capital investment in the UAV and multispectral
camera, the industry will be able to measure every vine by spending a similar amount as
on the Paso Panel based approach. However, a detailed cost-benefit analysis in this regard
is needed to establish a complete understanding of the costs associated with the adaptation
of this technology and its benefits, both short- and long-term.

For non-horticultural homogenous field crops, the satellite-based estimation of k. is
very reliable [30,31,38]. Complexity in the horticultural setting specifically due to inter-row
bare/vegetated areas reduces the estimation accuracies. In vineyards, R? of 0.177 and 0.426
was achieved using satellite-based SAR and NDVI images, respectively [79]. In a ground-
based study of a vineyard, [43] showed a linear relationship between the ground-based LAI
and the ground-based k. in Cabernet Sauvignon with an R? of 0.66. In a similar study, [40]
estimated the k. of the Thompson Seedless table grape as a function of leaf area per vine
(R? = 0.87), LAI (R? = 0.87) and shaded area (R? = 0.95). The higher estimation accuracy
with the table grape canopies can be attributed to the overhead trellis systems as compared
to the VSP trellis with the wine grapes [43]. Our study of k. on sprawling Cabernet
Sauvignon wine grapes is comparable to the ground-based study presented in [43]. Using
UAV remote sensing, our study presented the capability of remotely measuring k. with a
similar accuracy to that of the ground-based measurements (R? = 0.675). This capability
combined with the benefits of remote sensing in terms of efficiently and inexpensively
sampling a much larger area (several hectares) could increase the use of UAV in lieu of
field sampling.

The k. in vineyards is highly variable and can be influenced by vine management
practices, soil depth, rooting systems and vine training systems, among other factors.
While there are k. maps freely accessible to growers, these maps will require a site-, region-,
and crop-specific ground calibration to establish their usability [30,33]. Using a UAV-based
approach, the most practical solution from a grower’s perspective could be with the use
of a simple RGB camera on an autonomous UAV to compute the c_area as a proxy of
k.. Using just the c_area as an input, k. was estimated, in this study, with an R? of 0.295,
an RMSE of 0.091, and an MAE of 0.076. Given the improved level of autonomy of the
UAUVs and the increased efficiencies via data processing pipelines, estimating irrigation
requirements at multiple timepoints of the season could be within reach for growers using
a UAV-based RGB camera. This will improve the precision of the irrigation by computing
spatially explicit irrigation requirements for each vine as well as for the entire irrigation
zone. However, for the most accurate quantitative estimation, growers could consider
sophisticated models such as GLM, GAM or machine learning.

5. Conclusions

In this article, we demonstrated the application of an unmanned aircraft system to esti-
mating the crop coefficient and subsequent irrigation requirements of vineyards. The spec-
tral indices were highly correlated to k. until the véraison timepoint. After véraison,
the correlation between the spectral indices and k. value started to diverge. The structural
features presented the highest correlation coefficient and statistical significance with k. val-
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ues throughout the season. Combining both the spectral reflectance and structural features
of the grapevine provided a robust estimation of k. for both early as well as late in the
season. Incorporating k. values with an energy balance model can provide an estimate of
the irrigation requirements at different phenological stages. Preliminary economic analysis
revealed that the proposed UAV-based method was the most cost effective and quickest
method for estimating the k. and subsequent crop water needs per vine. With the continued
development of UAV and battery technology, we envision the increased use of UAV remote
sensing for the estimation of irrigation requirements in both small and large vineyards.
Future research directions could include irrigation thresholding and automated triggering
based on the measured crop water needs and the monitoring of vines and their physiology.
While ET. provided a basis for evidence-based irrigation, more precise control of grapevine
irrigation needs could require the use of plant-based sensors such as microtensiometers.
A combination of both ET- and plant-based sensors could be a way forward to potentially
maximise water use efficiency on a fine to a large scale.
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Abstract

Water potential (V) is a fundamental thermodynamic parameter that describes the activity of water and is a key metric of
plant water status. In this paper, we evaluate the continuous measurement of water potential in grapevine trunks using a novel
in situ sensor known as a ‘microtensiometer’ under field conditions in two South Australian vineyards. We characterised the
seasonal and diurnal dynamics of trunk water potentials (V) obtained from microtensiometers installed in two grapevine
cultivars, Shiraz and Cabernet Sauvignon, and compared these values to pressure chamber-derived stem (¥ ,,) and leaf
(¥ ..r) Water potentials. Diurnal patterns of ¥, matched those of ¥, and ¥, under low-vapour pressure deficit (VPD)
conditions, but diverged under high-VPD conditions, where ¥ .., dropped below ¥ .., in the late afternoon. Interestingly,
under high-VPD conditions, ¥, values consistently dropped below ¥ .., values around mid-afternoon with a recovery
observed by early evening. The highest diurnal values of ¥, were observed shortly after dawn. ¥ ., was better correlated
with ¥, .« than was ¥, in both cultivars. Time cross-correlation analysis revealed that Shiraz ¥, lagged Cabernet
¥,k 10 response to changing VPD. Microtensiometer-derived ¥, generally matched the seasonal and diurnal patterns
of plant ¥, obtained with a pressure chamber except under high-VPD conditions. To be useful for irrigation scheduling,

trun

where absolute values of ¥, are required, crop- and cultivar-specific thresholds of ¥, need to be developed.

Introduction

Measurements of crop water status, which are essential for
optimised irrigation scheduling, have historically relied on
low throughput and high cost instruments, and labour inten-
sive methods, that have decreased their utility and uptake
by the farming community. One such method widely estab-
lished to reliably quantify plant water status is the manual
measurement of leaf or stem water potential (Shackel 2011;
Williams and Baeza 2007), using a Scholander pressure
chamber invented in the 1960s (Scholander et al. 1965).
To overcome some of the limitations of such manual tech-
niques, several electronic plant-based sensors to continu-
ously measure crop water status have recently been devel-
oped that are based on various sensing modalities. These
include sap flow sensors (Ginestar et al. 1998), thermal dif-
fusivity sensors (Pagay and Skinner 2018), dendrometers
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(Corell et al. 2014), and thermal or infrared sensors (Jones
1999). A recent review of several of these sensors as applied
in tree fruit crops can be found in Scalisi et al. (2017).

Given the prevalence of water potential as a reliable crop
water status metric, sensors to measure plant water potential
have also been developed. These sensors, known as hygrom-
eters or psychrometers, provide continuous measurements of
water potential either as contact sensors on leaves or in situ
sensors embedded in stems (Dixon and Tyree 1984; McBur-
ney and Costigan 1984; Michel 1977). Hygrometers meas-
ure the water potential of the vapour phase. They are prone
to significant errors due to the requirement of isothermal
conditions between the measurement junction and plant tis-
sue (Dixon and Tyree 1984). A 1 °K temperature difference
between the plant tissue and sensor can result in a water
potential error of over 7.7 MPa (Dixon and Tyree 1984).
Much like stem hygrometers, other in situ sensors embedded
in the stems or trunks include those that measure the osmotic
potential of the xylem tissue and calibrated to stem water
potential (Meron et al. 2015). The osmotic potential sensor
requires proper fluidic contact between the sensor and the
plant tissue, as well has long transients (order hours) associ-
ated with the measurement.
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Tensiometers measure the water potential of an exter-
nal matrix by equilibrating an internal, constant volume of
water whose hydrostatic pressure is taken as the negative of
the external water potential. Tensiometers were originally
developed for measurement of soil matric potential (Rich-
ards 1942) and have been used for irrigation scheduling of
crops (Cormier et al. 2020). Based on this principle, Pagay
et al. (2014) developed MEMS-based tensiometers, so-called
‘microtensiometers’ (MT), for rapid measurements of the
water potential of an external matrix. The MTs were previ-
ously shown to operate reliably down to below — 10 MPa
with short transients (equilibration or response times)
of ~20 min. This measurement range and temporal resolu-
tion makes the sensors valuable for not only crop and soil
water status monitoring, but also other contexts including
meteorology, concrete curing and food processing, and other
systems where the internal water status is required. Subse-
quent improvements on the original MT design for improved
transients (faster response times) were made by Black et al.
(2020). This second-generation microtensiometer was used
for both in situ and ex situ measurements of water potential
in a range of matrices, including foods.

This paper presents the first results of field experiments
with MTs, embedded water potential sensors, in mature, irri-
gated grapevines in a Mediterranean climate. We compared
the dynamic MT responses of plant water potential to values
of leaf and stem water potentials as measured by the Scho-
lander pressure chamber over both long-term and short-term
(diurnal) periods. Our goal was to validate the use of MTs
in a field context under dynamic environmental conditions.

Materials and methods
Experimental site and plant material

Two commercial vineyard blocks located in the Coona-
warra region of South Australia (37.29° S, 140.83° E) were
selected for the trial. One block was planted in 1988 to Vitis
vinifera cv. Cabernet Sauvignon grafted onto Schwarzmann
rootstock, while the second block was planted in 2013 to
V. vinifera cv. Shiraz (syn. Syrah) grafted onto Teleki 5C
rootstock. Both vineyards were situated within 5 km of each
other and planted over the dominant ‘terrarossa’ soil, char-
acterised by a distinctive red-brown, thick, clay B horizon
soils overlying limestone, the depth to which is variable. In
each vineyard, three adjacent vines per cultivar were selected
for measurements, and additionally, the middle vine for con-
tinuous monitoring of soil and plant water status (see details
below). Row and vine spacing was 2.75 m X 2.2 m. Vineyard
management and integrated pest management were applied
to both blocks as per convention in the region for premium
wine grape production.
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Irrigation was applied using a single drip line
(¢ =21 mm) with pressure compensating emitters spaced
0.6 m apart, so each vine had approx. 3.7 drippers. The
output of these emitters was 1.56 L h™!. Therefore, each
vine would receive approx. 5.7 L h™'. Irrigation was
applied weekly starting in mid-December and ranged from
3.3 mm to over 16 mm per week during the warmest period
of the summer that typically included heatwaves. Irrigation
decisions were made by the commercial vineyard operator
that were based on a combination of historical experience,
weather forecasts, and soil moisture capacitance probes
where volumetric water content values were maintained
over 22%. This threshold soil moisture level was based
on historical experience in the vineyard block and soil
type to minimise vine water stress, especially during heat-
waves, which are common in the region during the grow-
ing season.

Environmental monitoring and climatic conditions

Environmental (weather) data for the vineyard blocks were
obtained from the Coonawarra automatic weather station
(AWS) maintained by the Australian Bureau of Meteorol-
ogy (BOM), Station ID: 026091. The AWS was located
approx. 200 m from the Cabernet Sauvignon vineyard and
approx. 5 km from the Shiraz vineyard. Daily maximum
air vapour pressure deficit (VPD) was calculated using
maximum temperature and minimum relative humidity
(RH) daily data. The long-term (20-year) mean January
temperature (MJT) for Coonawarra is 19.3 °C and the
growing degree days (GDD; base 10 °C; October—April)
is 1511. The climate of the area is characterised as Medi-
terranean, with winter dominant rainfall and relative sum-
mer drought. Average annual rainfall for Coonawarra is
approx. 569 mm (Bureau_of_Meteorology 2021). Sup-
plemental irrigation is typically required from December
until March. The elevation of the region is between 57 and
63 m above sea level.

Soil moisture measurements

Of the three sentinel adjacent vines in each cultivar/block,
the middle vine was selected for continuous monitoring of
soil moisture, temperature and electrical conductivity using
a capacitance-based sensor (Model: Teros-12, Meter Group,
Pullman, WA, USA) buried approx. 30 cm below the surface
and approx. 10 cm from the trunk of the vine in the vine
row. The hourly sensor data were wirelessly transmitted via
telemetry to a Cloud-based server and visually displayed
on a user interface (Greenbrain, Measurement Engineering
Australia, Adelaide, SA, Australia).
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Plant water status measurements
Leaf stomatal conductance

In each block, leaf stomatal conductance (g,) was meas-
ured on the three sentinel vines per cultivar between 1200
and 1300 h. Measurements were performed on one fully
expanded, healthy leaf per vine using an open system infra-
red gas analyser (IRGA; LI-6400XT, LI-COR Biosciences
Inc., Lincoln, NE, USA) with a 6 cm? cuvette. An external
LED light source (LI-6400-02B) attached to the cuvette was
used at a fixed PAR value of 1500 umol m~2 s~! due to the
sometimes variable ambient light levels. The cuvette gas
flow rate was set at 400 umol s~! and reference CO, was
set to 400 ppm. The cuvette and leaf temperatures were at
ambient (uncontrolled), while cuvette relative humidity with
the leaf inserted was maintained within a range of 35-55%.
IRGA measurements were conducted diurnally (every 2 h
between 0800 and 2000 h) on 2 days of contrasting VPDs—
high VPD (February 17, 2021; max VPD ~ 6 kPa) and low
VPD (January 26, 2021; max. VPD ~ 1.7 kPa)—that were
typical of a Mediterranean region.

Leaf and stem water potentials

In each block, midday stem (¥ ,.,,,) and leaf water potentials
(¥ o) were measured on adjacent mature leaves of the same
shoot between the hours of 1200-1300 using a Scholander
pressure chamber (Soil Moisture Equipment Corp., Santa
Barbara, CA, USA). For ¥ measurements, leaves were
bagged using an opaque aluminium-lined bag for a minimum
of 1 h prior to measurement to stop transpiration and allow
for equilibration of water potentials between the leaf and
shoot (stem). Measures of ¥, and ¥, were performed
on one leaf per vine from the three sentinel vines in each
block/cultivar. Leaf and stem water potentials were meas-
ured diurnally on the two measurement days concurrently
with IRGA measurements. The same leaf used for g, meas-
urement with the IRGA was used to measure V.

Trunk water potentials

On December 12, 2020, a total of four microtensiometers
(MT; FloraPulse, Davis, CA, USA) were embedded into
the trunks of the grapevines, two MTs per vine per cultivar.
Readers are referred to Pagay et al. (2014) for a detailed
description of the theory of tensiometry, and to Black et al.
(2020) for technical details of the MT sensor design, fabrica-
tion, calibration, and lab testing results (performance under
controlled conditions). Two MTs (Fig. 1a) were embedded
into each trunk of a woody, mature grapevine per cultivar.
Sensor installation consisted of the following steps: (1)
removal of bark on a flat section of the trunk; (2) removal

Fig.1 a Close-up view of an individual microtensiometer showing
the stainless steel packaging surrounding a protruding sensor chip.
The tip of the chip consists of the nanoporous silicon membrane
that allows for equilibration of water potentials between the exterior
matrix and internal water; (b) MTs installed in a grapevine trunk
within a stainless steel sleeve filled with kaolin mating compound; (c)
background: MT batting and reflective film to minimise temperature
effects on water potential measurements of the sensor; foreground:
dataloggers and wireless transmitters of the MT (bottom unit, white
box) and soil moisture sensor (top unit, red base)

of phloem tissue using a cork borer and spatula/blade; (3)
insertion of a custom stainless steel sleeve (Fig. 1b; OD:
14 mm, ID: 9 mm) using a hammer; (4) drilling into the
sleeve approx. 5 cm into the trunk (within xylem tissue) and
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Fig.2 Seasonal patterns of (a) vapour pressure deficit (VPD), (b, »

c) total water incident (irrigation+ precipitation), (d) soil moisture - FL B \ PH (a)
(as volumetric water content, VWC), and (e) trunk water potentials 6
(¥ yun) for Cabernet Sauvignon and Shiraz grapevines during the
2020-21 season. Approximate phenological stages shown on top © [
of VPD graph: FL=flowering; BC=bunch closure; V=veraison; % 4
PH =approx. one week pre-harvest E |
o
> 2

removing tissue; (5) filling the cavity with a kaolin-based
mating compound; (6) inserting the hydrated MT into the
mating compound; (7) placing a stainless steel cap to close of | |

tl:lt? sleeve; (8) cove.ring the sleeve exterior at the trgnk with —E~ 25 _ C A S 1 s — (.b )
silicone to ensure air and water proofing; (9) wrapping plas- g |
tic film around the sensor followed by a 25-mm-thick foam : 20}k
batting with reflective aluminium film to minimise exterior ug s
temperature fluctuations to the sensors (Fig. 1¢). The sensors ‘s 151
equilibrated with the vine (through the mating compound) 9..‘ i
within 2 days of installation. The MT data of trunk water _S 10__
potential (¥, value averaged for both sensors) were 'g 5|
obtained every 20 min wirelessly transmitted via telemetry = I
to a Cloud-based server (Amazon Web Services, USA) and o
visually displayed on a user interface (FloraPulse, Davis, g 20k SHI (c)
CA, USA). < |
Statistical analyses :'E . |
©

. . . . X 10
Time-lagged cross-correlation (TLCC) analysis was used in -
MATLAB programing software (v.9.8.0, R2020a, The Math- g | N }
Works, Inc., Natick, MA, USA) to analyse the continuous _& 5F | U I H
(20-min interval) data of VPD and ¥, over the course E [ 4 HI | FD ! ll |UH Hm
of 2 days with contrasting VPDs: January 26, 2021 (low- 48 = e
VPD day; daily max. VPD ~ 1.6 kPa) and February 17, 2021 — CAS — SHI (d)
(high-VPD day; daily max. VPD ~6.7 kPa). TLCC analy- [
sis involves determining the correlations between two time 30
series datasets that are shifted in time (Chatfield and Xing < |
2019), and repeatedly calculating Pearson Product Moment LE’
Correlation (cross-correlation) Coefficient (XCC) after 201
each shift (Cheong 2020). Resulting ‘offset’ values, which I
when selected at the highest normalised XCC in the series, 10

l l

indicate the time shift (lag or advancement) of a particular ———t ———t —t—t—t
time series compared to the other. Time shifts were selected 0.0} (e)
such that they aligned with the VPD and ¥, measurement

interval of 20 min; therefore, each offset represented 20 min. E -0.5
£
x -1.0F
Results E T
> sl — CAS
Seasonal patterns - — SHI
20, iy
Seasonal patterns of environmental conditions (VPD, rain- 150 200 250 300
fall +irrigation), soil moisture, and vine water status (¥, Julian Day

as measured by the microtensiometers, are shown in Fig. 2.
In general, soil moisture levels correlated strongly to water
incident in both vineyard, and in many cases inversely with
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VPD. Microtensiometer responses (¥, reflected both
soil moisture and atmospheric demand. Under high-VPD
conditions, e.g. Julian Day (JD) 208 when the maximum
VPD was approx. 6.7 kPa, ¥, values dropped by 0.2 and
0.5 MPa in Cabernet and Shiraz grapevines, respectively,
despite stable or even higher soil moisture levels. Based on
linear regression modelling using the same dataset to predict
¥k from VWC and VPD, the following relationships were
obtained for CAS and SHI (n=119):

W, icas = —0.983 — (0.109 X VPD) + (0.033 X VWC) (P < 0.0001)

¥ st = —1.187 = (0.212 X VPD) + (0.039 X VWC) (P < 0.0001)

The model results indicate that, while soil moisture has a
similar influence on ¥, in both cultivars, Shiraz was more
sensitive to VPD than Cabernet Sauvignon.

Seasonal courses of pre-dawn (leaf), stem and trunk
water potentials are shown in Fig. 3 for Shiraz and Cabernet
grapevines. In Shiraz, ¥, values showed a declining trend
over the season from JD 167, coinciding with the fruit set
phenological stage until bunch closure (JD 196) followed by
a recovery until harvest (Fig. 3a). This trend was matched
by both ¥« and ¥, albeit at lower absolute values of
water potential. The lowest value of ¥, was observed

(@) 0.0
— 03 s = Yiun
©
% (2] - kl"stem
B'; -0.6| § —t wpd
P -¥- VWC
L 1 " L 1 " 1 L " 1 "
150 200 250
Julian Day
(b)oolFL_BC Vv PH las
_ 03 130 s = Yunk
& - Y
E 425 2 stem
9? 06 S - Yy
09 120 -%- VWC
. . 115
150 200 250 300
Julian Day
Fig.3 Seasonal patterns of trunk (¥ ,.), stem (¥.,), pre-dawn

leaf (‘I’pd) water potentials, and soil volumetric water content for (a)
Shiraz and (b) Cabernet Sauvignon grapevines during the 2020-21
season. Data shown are for a single measurement vine per cultivar
in which the pair of MTs was installed. Approximate phenological
stages shown on top of each graph: FL=flowering; BC=bunch clo-
sure; V=veraison; PH=approx. 1 week pre-harvest

around bunch closure at approx. —0.7 MPa. For Cabernet,
the ¥4 value remained relatively stable until veraison (JD
261) when the value dropped from —0.2 MPa to —0.5 MPa
by harvest (Fig. 3b). This was matched by a continually
declining ¥, which reached a minimum of —0.9 MPa by
harvest. Interestingly, the trend in ¥ ., appeared to remain
fairly stable until JD 260 and then stabilised in the post-
veraison period.

Diurnal patterns of environment and vine water
status

Measurements of environmental conditions and vine water
status were made over the course of 2 days, one with high
vapour pressure deficit (VPD) and the other with low VPD,
during the 2020-21 growing season from 0800 to 2000 h.
The low-VPD day, January 26, 2021, was characterised by
sunny and cool conditions, with the daily maximum tem-
perature reaching just over 23 °C with a maximum VPD of
1.7 kPa at around 1400 h (Fig. 4a, g). On the high-VPD day,
February 17, 2021, maximum daily temperature was nearly
37 °C and maximum VPD was approx. 6.0 kPa (Fig. 4d, j).
The average soil volumetric water content (VWC) on the two
measurement days were 24.0% and 30.6% on January 26 and
February 17, respectively, in Shiraz; in Cabernet Sauvignon
the VWC values were 28.3% and 30.3% on January 26 and
February 17, respectively.

Under low-VPD (~ 1.7 kPa) conditions, Shiraz grapevines
had ¥, ne ¥ stemy @nd ¥.,¢ daily average minimum values of
—0.66, —0.96, and —1.30 MPa, respectively (Fig. 4b). Under
high-VPD (~ 6 kPa) conditions, Shiraz grapevines dropped
their ¥ o ¥siem and ¥, values to —1.1, —0.7, —1.5 MPa,
respectively (Fig. 4e), which were considerably lower than
during the low-VPD day. Under high-VPD conditions in both
cultivars, patterns of plant water potential (V) early in the
day were similar to the patterns observed during the low-
VPD day; the values of ¥, followed the expected order of
Yiunk > Yiem > Viear during the morning. However, a dis-
tinct shift in the pattern of ¥, was observed after approx.
1400 h: ¥« dropped below ¥ ., reaching a minimum
of —1.06 MPa around 1800 h, matching values observed for
V¥ o In comparison, ¥, at the same time (1800 h) was
—0.47 MPa. There was a noticeable recovery (increase) in
¥ .unk that started soon after 1800 h, matching the values
of ¥,s during this period late in the day (1800 h—2000 h).
Under the same (high VPD) conditions, patterns of Cab-
ernet Sauvignon ¥, were similar to that of Shiraz. Cab-
ernet had large differences between V1, Vem and ¥ieye
early in the day, and these reached their minimum values
of —0.67,—0.76, and — 1.5 MPa, respectively, between 1400
and 1600 h (Fig. 4k). Much like Shiraz under similar (high
VPD) conditions, there was a distinct crossing over of ¥«
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and ¥, around 1600 h; ¥, .. dropped to values below
¥ em> T€Maining in this position until the end of the day.

Leaf stomatal conductance (g,) was measured concur-
rently with ¥, measurements, and on the same leaf used
to measure ¥, Patterns of g, mirrored ¥, in both culti-
vars and across both measurement days under contrasting
environmental conditions. In Shiraz, average g, values were
highest early in the day, peaking around 124 mmol H,O
m~2s~! at 1000 h under low-VPD conditions, and consider-
ably higher around 235 mmol H,0 m~2 57! also at 1000 h
under high-VPD conditions (Fig. 4c,d). Under high-VPD
conditions, however, there was a precipitous decline in g
after 1600 h down to similar values observed under low-VPD
conditions by late day (2000 h).

Relationships between leaf, stem and trunk water
potentials

Correlation analysis between various vine water potential
metrics was performed to validate the ¥, data from the
microtensiometers versus the pressure chamber-derived
established metrics, ¥, and ¥ ..,. To search for robust
relationships between water potential metrics for the indi-
vidual cultivars, linear regression analysis was done for the
combined dataset of both cultivars (Fig. 5). For ¥ . Vs.
¥ ar (Fig. 5a), the slope was approx. 0.4 (R*=0.21), while
for ¥, ynk V8- ¥ gem (Fig. 5b), the slope was higher at approx.
0.95 with higher correlation coefficients (R*=0.45) and a
greater agreement between the two metrics compared to
Y iunk V8. ¥ieqr as indicated by the slope similarity to the
1:1 line.

0.0 ——

Ptrunk (MPa)

_2-0 - 1 1 1 | 1 | 1
-2. -1.5 -1.0 -0.5 0.0

‘I’leaf (M Pa)

Fig.5 Correlation analysis between trunk water potential (V)
and (a) leaf water potential (¥.,) and (b) stem (¥, water
potentials for both cultivars combined (slopes of individual culti-
var regressions not significantly different). Regression equations:

Trunk water potential sensitivity to VPD

The relationships between VPD and ¥, for Cabernet
and Shiraz for the period December 14, 2020 to February
10, 2021 (0600-2000 h) are presented in Fig. 6. There was
a significant difference between cultivars in the sensitiv-
ity of vine water status to VPD (as indicated by the slopes
of the regression lines) during the 2-month peak summer
period. Shiraz was more sensitive than Cabernet to changes
in atmospheric conditions, dropping its ¥, by approx.
0.17 MPakPa~!. In comparison, Cabernet reduced its ¥
by approx. 0.07 MPa kPa~!.

trunk

Ptrunk (MPa)

VPD (kPa)

Fig.6 Linear regression analysis of VPD vs. ¥, . of Shiraz and
Cabernet Sauvignon grapevines over the measurement period.
Regression equations: ~ Shiraz: ¥, =—0.3272-0.1696*VPD,
R’=0.51; Cabernet Sauvignon: ¥, ,=—0.1247-0.065%VPD,
R*=0.33. P value for differences between the slopes: <0.001

0.0
(b)
& .0.5f
£
- L
S
E: -1.0f
_1 .5 < - L 1 1 1 1
-1.5 -1.0 -0.5 0.0
\Pstem (MPa)

Yo = (Frear¥0.4072)-0.0531, RZ=0.21 (P=0.0022); ¥ oo = (¥ ern
*#0.9505) +0.1003, R?=0.45 (P <0.0001). Diagonal dotted line repre-
sents 1:1 line
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Time-lagged cross-correlation analysis (TLCC) was
used to analyse the time series datasets of VPD and ¥«
across 2 days with contrasting environmental condi-
tions or VPDs. Under low-VPD conditions (January 26,
2021; VPD ~ 1.7 kPa), TLCC analysis between VPD and
¥ .unk revealed that CAS had the minimum Pearson Prod-
uct Moment (normalised cross-correlation) coefficient of
—180 min indicating that ¥, lagged VPD by 180 min.
under similar (low VPD) conditions, Shiraz ¥, . lagged
VPD by 220 min. On the high-VPD day (February 17, 2021;
VPD ~ 6.7 kPa), TLCC analysis revealed that CAS V.«
lagged VPD by 80 min while Shiraz ¥, lagged VPD by
120 min, both lower than the time lags observed on the low-
VPD day.

Discussion
Seasonal and diurnal patterns of vine water status

In the present study, seasonal and diurnal measurements
were made using MTs in Shiraz and Cabernet Sauvignon
field-grown grapevines. Seasonal patterns of ¥, . were
typical of crop water potentials observed in several Mediter-
ranean crops under supplemental irrigation (McCutchan and
Shackel 1992; Williams et al. 2012) with a gradual increase
of vine water stress over time. In the case of Shiraz, the steep
decline observed leading up to JD 196 (Fig. 3a) resulted
from a faulty valve in the sub-main irrigation line, which
upon subsequent repair improved soil moisture levels and
vine water status. Cabernet ¥, stabilised after veraison
and could be related to the increase in soil moisture during
this period coupled with warmer and drier conditions.

Our diurnal observations indicated that the lowest ¥,
Y oems and ¥ were reached around 1400 h, 1600 h and
1800 h, respectively, on low-VPD days, whereas these
times were advanced on the high-VPD day, particularly
for ¥y, and ¥ - Williams and Baeza (2007) suggested
that the influence of VPD on Y., decreases as soil mois-
ture decreases. Modelling of diurnal patterns of ¥, pre-
dicted that the lowest values are likely to be reached around
1400 h, approx. 2 h after the highest leaf transpiration rates
are reached (Katerji et al. 1986). This transient (or delay)
in ¥,.,; response can be attributed to the contributions of
both plant tissue water and root uptake of soil moisture to
the transpiration stream. These modelled patterns compare
favourably with those obtained from lysimeters; maximum
transpiration rates were reached between 1200 and 1400 h
(Williams et al., 2012). The same study found that higher
vine sizes or crop factors result in not only increased tran-
spiration rates, as expected, but also a delayed peak by as
much as 2 h. Similar patterns of vine transpiration were
observed in studies using sap flow and thermal dissipation
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sensors (Braun and Schmid 1999; Pagay and Skinner 2018).
The diurnal measurements of leaf stomatal conductance (g,)
in the present study indicated that the highest values were
reached in the afternoon on low-VPD days and late morn-
ing on high-VPD days. Reductions in g, following this peak
resulted in increases in ¥, and ¥, but not V... This
lack of response from ¥, might indicate a level of buffer-
ing of water potential in the woody organs of the plant, in
this case the trunk, where xylem vessels are surrounded by
parenchymal cells that can contribute water to the transpira-
tion stream, the so-called ‘capacitance effect’ (Salomon et al.
2017; Waring and Running 1978).

The highest diurnal ¥, observed in the present study
was reached in the early morning, between 0700 and 0800 h,
which is consistent with another study reporting that ¥,
does not start decreasing from its maximum diurnal value
until the early morning, approx. 0700 h (Cole and Pagay
2015), but in contrast to another report that ‘I’pd decreases
from 0330 h (Carbonneau et al. 2004). The observation has
implications for the timing of measurement of ¥ 4, if used
as a metric for crop irrigation scheduling as recommended
previously (Stricevic and Caki 1997). Donovan et al. (2001)
found that ¥4 and ¥, in several woody plants may not
reflect ¥, even under well-watered conditions without noc-
turnal transpiration. This was hypothesised to be due to the
accumulation of high concentrations of solutes in the leaves,
although grapevines have only modest levels of osmotic
adjustment compared to many other woody horticultural
crops (Rodrigues et al. 1993).

trun

The use of trunk water potential for irrigation
scheduling

MTs offer yet another plant water status metric, ¥\, that
has been shown in this study to have a different range of val-
ues compared to conventional measures of ¥, and V...
These conventional metrics have been well characterised for
irrigation scheduling and thresholds have been suggested in
the literature (Deloire and Heyns 2011; Romero et al. 2010).
Trunk water potential is arguably the most stable of these
three metrics, integrating all the leaves of the plant in a sta-
ble tissue that is relatively unaffected by external factors as
are ¥ .; and V.. Our measurements of these three vine
¥, metrics indicated that, in some instances, ¥, tended
to be nearly 1 MPa higher than ¥, indicative of the high
hydraulic resistances between the trunk and leaves. Previous
reports have shown that the highest hydraulic resistance in
this pathway lies in the leaf, representing as much as 30% of
the overall resistance in the plant (Sack et al. 2003), likely
due to the fewer and narrower xylem vessels in this section
of the pathway compared to distal sections. We found a weak
agreement between the absolute values of ¥, and ¥ ,¢

and a slightly better agreement versus ¥, This indicates
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that practitioners require new thresholds of ¥, to use for
irrigation scheduling. The ¥, Was also susceptible to the
least fluctuations diurnally, although this was only shown
to be true under low-VPD conditions (Fig. 4). Its central
location in the plant between the roots and leaves, as well
as buffering of xylem water status (pressure potential) via
capacitance from adjoining parenchymal cells and second-
ary xylem (Meinzer et al. 2009) would be plausible reasons
for the stability of the trunk’s water status. However, we
observed that ¥, . responded to changes in soil moisture
(via irrigations) less rapidly than to changes in VPD (data
not shown), which suggests that the trunk may be well-cou-
pled to the leaves despite the high hydraulic resistances in
the leaf petioles. A related and somewhat surprising obser-
vation was made under high-VPD conditions: we consist-
ently observed the crossing over of the ¥ ., and ¥ ..., lines
in the mid-afternoon (Fig. 4e, k). The lower ¥, value
(compared to ¥, during warm afternoons indicates that
the trunks of both cultivars were considerably more water
stressed than the stems and similar to the leaves in the late
afternoon. A plausible explanation for this response is that
the roots may be under water stress owing to transient water
deficits at the soil-root interface due to high transpiration
rates under high-VPD conditions, as well a relatively signifi-
cant hydraulic resistance between the trunk and stem. Pagay
et al. (2016) reported that, under high-VPD conditions, low
plant water potentials could result, if the capillary conductiv-
ity of soils in the rhizosphere is inadequate to support high
canopy transpiration rates. Recent reports on the existence of
localised positive pressures in the xylem due to a variety of
factors including osmotic exudation and/or water contributed
from neighbouring parenchymal cells (Schenk et al. 2020)
further support the possibility that higher water potentials
in the stem compared to the trunk may exist transiently and
in a localised manner, particularly when transpiration rates
are low. This hypothesis needs to be tested with additional
experimentation.

Continuous measurements of ¥, using in situ micro-
tensiometers, which were demonstrated in field-grown
plants for the first time in this study, offers a convenient
measurement of plant water status for irrigation schedul-
ing. Furthermore, these in situ measurements of plant water
potential provide a useful tool for physiological studies
of plant hydraulics in a dynamic environment, for exam-
ple, studies on the limiting water potentials of plants as
well as those involving cavitation and embolism recovery
dynamics. Microtensiometers are also amenable to automa-
tion, for example, to automate irrigation scheduling via a
decision support system in which thresholds of ¥, are
pre-programmed in irrigation controllers for various crop
phenological stages and that also incorporate other relevant
environmental parameters such as weather forecast and soil
moisture data for precision irrigation. The use of published

Y em OF ¥eor thresholds to drive irrigation decisions should
be based on measurements of the specific metric for which
the threshold has been developed; a translation of those val-
ues to V...« Would not be appropriate due to physiological,
hydraulic and anatomical differences between plants. Fur-
ther research is required to validate inter-sensor variation of
¥ unk Within the same plant, long-term sensor performance
and stability, as well as determining ¥ thresholds for
irrigation scheduling.
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Abstract

Background and Aims: To improve vineyard sustainability in increasingly arid conditions, optimising water use
efficiency (WUE) has been proposed as an important target in scientific literature, and irrigation scheduling is
another means by which WUE may be improved. To schedule irrigation, there are a wide variety of strategies
available to vineyard operators. However, there is a need to investigate the costs associated with each of these

approaches, particularly when considering the adoption of new technology.

Methods and Results: The financial returns associated with four different approaches (GROW, ET, PWS and SWS) to
irrigation scheduling was investigated in a premium Cabernet Sauvignon vineyard in Coonawarra, South Australia
over three growing seasons. Financial analysis showed scheduling using data driven metrics (ET, PWS and SWS) as
having similar returns compared with scheduling carried out in the conventional (GROW) treatment, as
demonstrated by statistically similar net present values (NPV). Though despite the lack of statistical significance,
all financial indicators investigated in this study suggested scheduling using either an ET or PWS based approach to
be associated with higher farm returns (compared with GROW). The impact of including a gross water price into

production costs was also discussed, as water is principally sourced from underground aquifers in Coonawarra.

Conclusions: Data driven strategies were preferred when carrying outirrigation scheduling, as these strategies were
associated with irrigation reductions, improvements in WUE and similar financial returns compared with the

conventional approach.

Significance of the Study: This study highlights data driven strategies as financially feasible alternatives for irrigation

scheduling in cool climate Australian vineyards.

Keywords: capacitance probe, evapotranspiration, infrared thermography, vitis vinifera, water use efficiency,
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1. Introduction

Vineyard management strategies that enable grape growers to adapt to changing climatic conditions are essential
for safeguarding the future of wine production in Australia. The wine industry plays an important role in the
Australian economy, having contributed approximately $45 billion dollars in 2020. However, this contribution
required over 496,300 ML of irrigation, representing just over 8% of Australia’s agricultural water usage in
2019/2020 (Australian Bureau of Statistics, 2020). Modifying irrigation has previously been stated as one of the
most effective tools to lessen the impact of reduced water availability and increase water use efficiency (WUE) in
agriculture (Medrano et al., 2015, Naulleau et al,, 2021). For this reason, as well as often observed improvements
to berry quality and resulting wine (Chaves et al.,, 2010, Torres et al,, 2022), deficit irrigation (DI) strategies are a
common aspect of irrigation management in most Australian vineyards. DI refers to strategies that apply irrigation
below a crop’s full water requirements (Fereres and Soriano, 2007), and refers to approaches such as sustained
deficit irrigation (SDI) (Fereres and Soriano, 2007), regulated deficit irrigation (RDI) (McCarthy et al., 2002) and
partial rootzone drying (PRD) (Dry and Loveys, 1999). However, DI strategies need to be managed with appropriate
plant water stress and irrigation thresholds in mind (i.e. irrigation scheduling) (Romero et al., 2010), in order to
realise the full benefits associated with these techniques. Irrigation scheduling refers to the timing and volume of
irrigation application and has been proposed as another means of improving WUE (Koech and Langat, 2018),
particularly in horticultural crops, including grapevine (Fernandez, 2017). Vineyard irrigation scheduling can be
undertaken using several different strategies, and these strategies can be broadly categorised as those based on i)
historical applications or experiential, ii) evaporative demand (e.g., crop evapotranspiration, ET.), iii) plant water

status thresholds, and iv) soil moisture (matric potential or volumetric water content) thresholds.

In Australian vineyards, carrying out irrigation scheduling using soil moisture thresholds is widely popular,
particularly when it involves measuring volumetric water content (%VWC) (Nordestgaard, 2019). Monitoring
%VWC typically involves using a variety of commercially available sensors and probes that can function either
continuously or as a static measurement. The crucial challenge when using soil-based approaches for irrigation
scheduling is in ensuring measurements are representative of the large spatial variation (i.e. differences in rooting
depths or soil characteristics) that is often present in vineyards (Lebon et al.,, 2003). To overcome this variability, a
large network of sensors (or probes) are often required, which may become cost prohibitive for some grape
growers. Alternatively, irrigation scheduling using plant-based thresholds requires the irrigator to measure an
aspect of plant physiology responsive to changes in plant water status. As an example, recent investigations
highlighted stomatal conductance (gs) as a highly sensitive indictor of water stress (Tuccio et al., 2019), a finding
which has been emphasised previously (Jones, 2004). Canopy temperature has also been shown to be highly related
to gs due to the effect stomatal aperture has on leaf temperature (Jones etal.,, 2002) and techniques such as infrared
thermography enable canopy temperature to be accurately monitored (Belfiore et al., 2019), with specific indexes
that relate gs to canopy temperature also available (Petrie et al., 2019). Similar to other plant-based approaches,
adequately capturing vine-vine variability while avoiding the need for labour intensive measurements and high
equipment costs can pose a challenge when using these methods. Though despite this, plant-based methods are still
considered to be the most accurate representation of plant water status compared with other forms of irrigation
scheduling (Shackel, 2011). As an alternative to sensor driven approaches, irrigation scheduling based on

evaporative demand (evapotranspiration, ET) is another method available to growers. ET-based scheduling

3
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involves the estimation of a crop’s water loss (crop evapotranspiration, ET¢) over a specific period of time (either
daily or weekly) and then replacing a fraction of or all of this water. Calculating this water loss is most commonly
undertaken using the Penman-Monteith energy balance model (Allen et al., 1998). The major benefit in using this
approach is the ability to numerically determine how much irrigation water is required, while the biggest challenge

is typically in obtaining and using accurate crop factors (k. values) (Gautam et al.,, 2021).

Each of these scheduling approaches (historical or experiential knowledge, soil moisture thresholds, evaporative
demand based, plant water status thresholds) pose a range of benefits and challenges, however, understanding the
costs involved is also an important consideration when carrying out irrigation scheduling. Furthermore, the
adoption of new technology or the implementation of an altered practice change can be hindered by an incomplete
understanding of the economic implications of these decisions (i.e., introducing new technology) (Alcon et al,
2013). It therefore follows that adoption is more likely to be made, if the technology (or practice change) generates
a positive net benefit. This is critically important when investigating ways to improve water use efficiency in
irrigated agriculture. Financial analysis and discounted cash flow analysis (DCFA) have previously been used to
assess the financial feasibility of different irrigation technologies and strategies in a range of horticultural crops,
including almonds (Garcia et al.,, 2004, Romero et al., 2006, Alcon et al., 2013), citrus (Pérez-Pérez et al., 2010,
Maestre-Valero et al., 2016, Panigrahi et al,, 2013), olives (Egea et al., 2017), and winegrapes (Garcia Garcia et al.,
2012, Romero etal., 2016, Bellvert et al.,, 2021). In its simplest form, a financial analysis involves summing the total
monetary benefits and costs of a project and, if the total benefits exceed the costs, the project is considered
economically viable (Griffin, 1998). As an extension of this, a DCFA can be used to assess the future profitability
associated with adopting new technology by considering the total lifespan of the investment in question. Additional
indices that explore the relationship between various parameters such as profit, yield and water applied can also
be calculated during a CBA (Romero et al., 2016). Therefore, the primary objective of this work was to apply
financial analysis in order to evaluate the financial costs and benefits involved with adopting different forms of

irrigation scheduling in premium Coonawarra Cabernet Sauvignon.

2. Materials and Methods

2.1 Field conditions, vineyard description and management

This research was carried out over three growing seasons (2018/2019, 2019/2020 and 2021/2022) at a
commercial vineyard planted in 1988 in Coonawarra, South Australia (-37°28’52” S, 140°83°00” E). Vitis vinifera L.
cv. Cabernet Sauvignon on Schwarzmann rootstock (V. riparia x V. rupestris) was grown on Terra Rossa, a red clay
loam common to the region (Longbottom et al., 2011). Analysis showed the soil as posessing 25% clay, 56% sand
and 19% silt. Vine rows were orientated east-west and had a row and vine spacing of 2.75 m and 2.2 m, respectively,
generating a vine density of 1,653 vine hal. Vines were spur pruned to two-node spurs with 5 to 6 spurs per linear
metre of cordon, and were trained according to a sprawl type canopy. According to this canopy structure, shoots
grow vertically early in the season and are allowed to drop after mid-season, therefore providing shade to the fruit.

Canopy management followed the practices of the commercial vineyard and varied depending on the season, but
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generally included at least one pass of shoot trimming (average shoot length ~1 m) to minimise canopy vegetative

growth. Nutrition and integrated pest management were applied as per regional convention.

2.2 Experimental design and irrigation treatments

The experimental layout was a randomised complete block design where each treatment was replicated twice in
two blocks. Within each block, treatments consisted of three rows, with two rows separating each treatment block.
Four vines from the middle row (of the three rows) were evaluated for a maximum of eight vines per treatment
each season. Irrigation treatments were defined by the types of irrigation thresholds/decision making involved with
using each metric. Four different irrigation scheduling treatments were applied 1) irrigation decisions that were
grower driven (GROW), 2) decisions that were driven by assessments of plant water status thresholds (PWS), 3)
decisions based on crop evapotranspiration (ET.) and 4) scheduling based on measurements of soil volumetric

water content using soil water status thresholds (SWS); see below for description of specific thresholds.

The GROW treatment was conducted according to experiential/historical grower knowledge and was assigned as
the control treatment. Grower decision making typically included the use of historical irrigation records, weather
forecasts, and visual canopy assessment of vine water status. The grower also had access to one soil moisture probe
in an adjacent block with the same soil type. The frequency and amount of seasonal irrigation typically received by
these blocks vary from season to season, however generally falls within 0.5-0.6 ML ha1. The ET treatment included
a weekly calculation of crop evapotranspiration (ETc). The single ke approach was used to estimate ET, with ke
values derived from measurements of intercepted light beneath the canopy (Williams and Ayars, 2005), whilst
reference evapotranspiration (ETo) was calculated using the Penman-Monteith equation (Allen et al., 1998). The
climatic variables required for the equation were obtained from a nearby weather station (Bureau of Meteorology
weather station, Coonawarra, station ID 026091). The PWS treatment was based on measurements of g carried out
with a portable infrared gas analyser (LI-6400XT; LI-COR, Inc., Lincoln, Nebraska USA) in the first two seasons
(2018/2019 and 2019/2020), then fully transitioned to proximal sensing using infrared thermography towers
(Transp-IR, Athena Irrigation, Adelaide, South Australia) in the last season (2020/2021). One infrared
thermography tower was placed between the second and third vine in each PWS block. The vine water index (VWI),
which is based on gs, was calculated in the Cloud daily and was remotely accsssible. Lastly, vines in the SWS
treatment were irrigated according to measurements of volumetric water content from capacitance-based soil
moisture sensors (Teros 12, Meter Group, Pullman, USA). The sensors were situated 10 cm away from the trunk in
the under vine area and buried at a depth of 30 cm. Data from these sensors were also remotely accessible and

continuously logged every hour.

For each data-driven treatment (ET, PWS, SWS), the decision to irrigate was triggered when a reference parameter
(% ET¢, gs and % VWC) fell below predetermined thresholds. Historical soil moisture in the growing season over
the previous five years was 32% and the SWS treatment imposed a 30% deficit on this historical value to follow an
SDI strategy consistent with premium Cabernet Sauvignon wine grape production in the region. ET and PWS
thresholds were established using data from preliminary studies in the vineyard block during the 2017/2018

season. Target thresholds for the ET treatment were based on RDI; fruit set to veraison 25% ET¢, and veraison to
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harvest 50% ET., targeted at controlling canopy and berry size. PWS thresholds were based on an empirical
relationship between an and g and established in a preliminary study. The optimum g (to maximise WUE;)
corresponded to approx. 75% of maximum 4n, which was found to be between gs values of 0.12 - 0.15 mol H20 m-2

st (VWI of 0.4 - 0.6). This threshold was maintained from fruit set to harvest.

2.3 Yield and water use efficiency measurements

Grape bunches were hand-harvested in line with commercial harvest dates in early April of all seasons (11t April
2019, 8t April 2020 and 14t April 2021) and weighed on a per vine basis to determine t ha'l. To assist in accounting
for the high variability in the trial blocks, irrigation amounts and WUE: were adjusted according to vine length. It
was assumed that vines 2.2m or less in length would have received the full amount of irrigation as determined by
the thresholds each week. However, vines that exceeded 2.2m in length were assumed to have received a higher
irrigation entitlement compared to the shorter vines. This was achieved by multiplying the vine length by total

water output (L m-1) as dictated by the number of drippers in a row.

As an additional measure to account for high vine-vine variability, an outlier test was applied in to assess whether
variations in bunch number unfairly influenced gross margin (gross revenue before tax minus costs) (GM) via
effects on yield. All 32 vines (including all treatments) were sorted according to bunch number each season (bunch
numbers per vine and bunch m), with vines repeatedly found outside the 2nd and 3rd quartiles highlighted for
further inspection (i.e. found to be an outlier in 2018/2019, and continued to be an outlier in 2019/2020 and
2020/2021). All vines were then sorted according to yield, if the same vines that were identified in the whole bunch
number and bunch m-! outlier tests were identified in the yield outlier test, these vines were removed from the

analysis. 1 vine was identified in each of the GROW, ET and PWS treatments that satisfied these criteria.

2.4 Financial analysis - discounted cash flow analysis

To carry out the financial analysis, the approach that was used closely follows that of Egea et al. (2017). Production
and irrigation data were assessed within the experimental period using GM, as well as a range of financial

performance indices: economic productivity (EP), economic water productivity (EWP) and breakeven point (BP).

£p - Gross margin ($)
" Total yield (t)

Gross margin ($)

EWP =
Total irrigation water (ML)

_ Total operational costs €))
B Total yield (t)
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DCFA was also undertaken in order to investigate each strategy based on estimated future farm returns. A DCFA
facilitates this by evaluating future cash flows in relation to the size of the initial investment (Finnerty, 2012}, and
involves estimating the expected future cash flows (CFn) over a specific time period, discounting these cash flows
using an appropriate discount rate (i), and calculating the value of these cash flows (minus investment costs, k), also
known as the net present value (NPV). In addition to NPV, the internal rate of return (IRR) were also calculated. The
IRR is the discount rate in which NPV equals 0, and reflects an estimated return on investment as a percentage

rather than a dollar value.

The discount rate chosen to carry out the DCFA in this study was 5% and the time horizon for the DCFA was fixed
at 20 years. Although vineyards can be productive beyond 20 years, scheduling technology may evolve beyond what
was investigated here when considering a time period outside 20 years. In addition to this, a time horizon of 20
years been used previously in similar horticulturally based irrigation studies (Maestre-Valero et al., 2016, Egea et
al.,, 2017). Investment costs for vineyard establishment were estimated to be $60,000 ha-!, and is reflective of a
replanting approach using grafted vines in an already established vineyard (Logan, 2018) (which includes removing
existing vines, replacing irrigation infrastructure and trellising; this approach was estimated to be more common
in Australia), rather than establishing a new vineyard on previously unplanted land. Investment costs for vineyard
establishment were taken to be the same for each strategy. For the purpose of carrying out the DCFA, a non-
productive and 50% full production phase was included as part of a replanting approach. It was assumed vineyard
establishment costs would be incurred at the beginning of year 1 (time 0), further negative cash flows would be
incurred in years 1 (the end of) and 2 (representing the non-productive phase of a new vineyard), 50% of full
production would be reached in year 3 and full production would be reached in year 4. Cash flows from each
experimental season were averaged for each strategy (to represent full production), with this average value being
extrapolated out for a 20 year investment. It should be noted the DCFA was undertaken assuming i) grape price
would remain stable, ii) berry quality would remain unchanged, and iii) average gross margins would remain
consistent across the 20-year simulated period. As part of the financial analysis, a sensitivity analysis was applied
in order to assess the impact of different factors (i.e., grape and electricity prices), including discount rate (3% and
7%), on measures of farm return. In addition to the sensitivity analysis, scenario analysis was also undertaken to
evaluate a situation in which growers would need to factor in a gross water price as part of production costs. A gross
water price of of $1000 ML-! was chosen as this represented the highest monthly allocation price of water attained

in the souther Murray Darling Basin (MBD) during the Millennium drought (Aither, 2020).

2.4.1 Costs
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2.4.1.1 Irrigation scheduling technologies

Developing the initial financial model required establishing the costs and benefits associated with strategy. Costs of
interest included those either directly related to the strategy itself (i.e., equipment costs), or costs indirectly related
via the strategy’s impacts on water usage and vine performance (i.e., electricity costs). Investment and ongoing
operational and maintenance costs were separately established for each irrigation strategy according to a 15ha
vineyard (Table 1). The GROW treatment reflected the equipment the commercial grower used at each site, which
included a singular soil moisture probe and access to a local BOM weather station (Bureau of Meteorology weather
station, Coonawarra, station ID 026091). In this GROW scenario, the soil moisture probe incurred a cost, however,
access to the local weather station data was free. It was assumed an experienced Vineyard Manager would be
making weekly irrigation decisions over an 18 week irrigation season (Middle of December to the middle of April),
and that the Vineyard Manager would spend approximately half an hour each week making these decisions. The
time cost associated with these decisions was calculated and reflected the average yearly wage of an experienced
Vineyard Manager. For the ET treatment, as crop factors were obtained through measurements of intercepted light
beneath the canopy (Williams and Ayars, 2005), construction of the panel required for those measurements was
included as an initial cost (Table 1). To reflect the panel’s potential usage in a vineyard setting, it was assumed a
grade 5 vineyard worker (Fair Work Commission, 2000) would require one season to measure and establish crop
factors that could be used in future seasons (provided the season measured was generally reflective of previous
seasons), and was therefore considered as an initial cost. However, crop factors can also be obtained through use
of remote sensing techniques (Gautam et al.,, 2021), but this was not investigated as part of the current study.
Operational costs associated with the ET treatment was taken as the time cost of a grade 5 vineyard worker (Fair
Work Commission, 2000) requiring one hour each week to calculate ET. values using ET, values obtained from the
nearby BOM weather station (access to weather station did not incur a cost). However, ET, can also be manually
calculated using climatic variables sourced from an onsite weather station. Though this may constitute an additional
labour cost, with the weather station itself also an additional investment cost that must be considered. For each of
the sensor driven approaches (PWS and SWS), it was assumed a 15ha vineyard would have 6 sampling sites (6
sensors), and would require a grade 5 vineyard %2 hour each week to evaluate sensor data in line with established
threshold ranges. Ongoing data subscriptions and maintenance costs were included as per company guidelines
(Table 1). The lifespan of each technology was also established in conjunction with company guidelines, however,
it was assumed crop factors would need to be recalculated every 10 years. There was no lifespan value attributed

to the GROW approach.

2.4.1.2 Vineyard

Costs associated with each irrigation scheduling approach were then integrated into a general model which
included both the costs accumulated during the vineyard growing season, and investments costs required for
vineyard establishment. General vineyard operating costs such as chemical spray programs, pruning and harvesting
etc. were taken to be the same for each strategy, as were the fixed overhead costs which included aspects such as

management wages, land tax, insurance and debt servicing etc. Both the fixed and general vineyard operating costs
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were set at a value of $9,000 ha-1, a figure which is reflective of a corporately owned vineyard operating in a cool
climate region. This value was established during conversations with local growers and vineyard contractors. As
water is principally sourced using groundwater in the Coonawarra region, the cost of water was calculated as the
electricity required to pump the water from bore sites in close proximity to the trial blocks, as per Egea etal. (2017).
To calculate pumping costs, kWh ML-1 was determined, and then converted to $ ML-1 using an appropriate electricity

rate (incorporating both raw energy costs and supply charges):

KWhML™ = kW = (Q x 0.0036)

$ML™ =$kWh™' x kWhML™*

2.4.2 Benefits

Benefits were taken to be the pre-tax income received if growers on sold the grapes to a winery (with wine grape
production volume influenced by the irrigation strategy applied). Income was grade based, and the specific grade
chosen for the fruit that resulted in this study was conceptualised based on discussions with growers, assessing
pricing surveys, and statistical tests to determine whether fruit quality differed between treatments (data not

shown).

2.5 Statistical analysis

Statistical analysis was carried out using Prism software (version 9.0.0, GraphPad Software, San Diego, CA). One-
way ANOVA was used to compare all treatments and the Tukey multiple comparisons posthoc test (a = 0.05) was

applied to assess differences between specific treatments.

3. Results

When considering initial investment requirements for a 15ha vineyard, the sensor driven treatments were
associated with the highest initial costs (SWS being the highest, $13,577), whereas the ET treatment had the lowest
($1,172) (Table 1). Alternatively, in other vineyards where the GROW treatment is more closely defined by a purely
non-data driven approach (i.e. encompassing a heavy reliance of visual assessments, local weather reports and
historical knowledge), this treatment would arguably have no investment requirements in comparison to what has
been shown here, and would therefore have the lowest initial cost. Operational costs for the GROW and ET
treatment were predominantly driven by the cost of labour, whereas operational costs for the PWS and SWS

treatments were heavily influenced by the cost of data subscriptions and equipment maintenance.

Across all seasons, reductions in water were observed for each of the data driven strategies (ET, PWS and SWS) in
comparison with the GROW treatment (with an average reduction of between 28% and 43%) (Table 2). Irrigation

for both the ET and PWS treatments were found to be similar and significantly lower than either of the SWS and
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GROW treatments (Table 2). In connection with water applied, total pumping costs (TPC) were also found to be
significantly lower for both the ET and PWS treatments in comparison with GROW (with TPC reductions of 45%
and 42%, respectively). Mean yields were similar across all treatments, however, SWS was associated with the
lowest yield (5.09 t ha'l) and the ET treatment, the highest (6.41 t ha't). WUE was also found to be highest for the
PWS treatment (2.96 t ML-1), and lowest for the GROW treatment (2.31 t ML1), however, these weren’t found to be
significant differences (PWS v GROW, P< 0.1552) (Table 2).

Following trends observed for yield, the ET and PWS treatment obtained the highest GM values (16,578 $ haland
16,515 $ t1, respectively), followed by GROW (15,201 $ t1) and SWS (11,188 $ t1) (Table 3). Economic water
productivity (EWP) was significantly higher for the PWS treatment compared with GROW and SWS, but was similar
to ET. However, these same differences were not observed for economic productivyt values (EP), which were found
to be similar between treatments. With regards to breakeven point (BP), BP was lowest for the ET and PWS
treatments (1,553 $ t! and 1,588 $ t1, respectively), and highest for the GROW and SWS strategies ($1,655 and
$1,845, respectively). When considering long-term profitability as a result of the DCFA, trends closely followed
those observed for GM within the experimental period. This meant the ET and PWS treatments showed the highest
net present value (NPV) (86,676 $ ha'! and 84,834 $ ha'l, respectively), and SWS, the lowest (30,201 $ ha'1) (Table
4), with NPV BP following a similar ranking (Figure 1 A). The internal rate of return (IRR), which is an indicator of

return on investment was also consistent with NPV in each treatment.

When considering changes in NPV as a result of fluctuating grape price, the SWS treatment was found to be the most
sensitive (slope of 6.8) (Figure 1 B), followed by the GROW treatment (slope of 3.3). Similar trends were also
observed when comparing the sensitivity of NPV to changes in discount rate (slopes ranged between 2.5 (SWS) and
1.9 (ET)). When considering the effect of a 50% increase to electricity price, impact on NPV and BP values were
negligible (>1% change). However, when considering a scenario in which growers paid for water similarily to what
occurs in warm climate regions (i.e. the Murray Darling Basin), an additional production cost of $1000 ML-!
(representing a gross water price) was associated with NPV and BP reductions of 9% and 7%, respectively for the

GROW treatment.

4. Discussion

During the course of investigation, reductions in irrigation were observed for all data driven interventions across
each season, with reductions in water requirements also associated with reduced costs (Tables 2 and 3). In
particular, TPC which reflects the cost of electricial energy for irrigation supply, mirrored differences in water
application observed between each treatment. However, the similarities between the ET and PWS treatments
(when considering TPC) were no longer evident when exploring total operational costs (TOC), suggesting the higher
scheduling costs associated with the PWS treatment reduced its costing similarity to ET (Table 3). The GROW
treatment was observed to have a sigifncaitly higher TOC compared with each of the data driven strategies despite
noticeably minor differences between absolute values (less than 1%), indicating trends in TOC were highly
conserved among seasons. Differences between absolute values of treatment TOC may have been slightly larger had

vine size and yield been accounted for, as both these parameters would have been influenced by differences in water
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application, and consequently harvest and pruning operations. However, when carrying out the intial financial
assessment, a machine-based approach to harvesting and pruning was chosen as opposed to carrying out these
tasks by hand. When considering these costs, the cost of a machine based approach is rarely affected by the size of
a vine, but rather, is largely based on a cost per linear metre of vine cordon (Fisher, 2005), or the layout of the
vineyard itself. Additionally, in a previous study considering wine grapes, Garcia Garcia et al. (2012) determined
that differences in pruning expenses had a negligible impact on the total costs associated with each of the deficit
irrigation strategies investigated in that study, despite large differences in water application (up to 54% reduction
in irrigation compared with a 60% ET. SDI control). Consequently, the difference in harvesting and pruning costs
between treatments was considered to be negligible and was not considered as part of the model. Therefore, the

main driver behind differences in treatment costs throughout this study was associated wth irrigation supply itself.

To establish the financial benefits associated with each treatment, the value of the crop produced using each
strategy was determined by investigating yield and quality differences. However, as berry quality was found to be
similar between treatments (data not shown) and trends in GM were closely related with yield, the ET and PWS
treatments were associated with the highest farm returns (in comparison with GROW and SWS), though these
differences were not found to be significant (Table 2 and 3). The similarties between average GM for each strategy
was likely the result of statistically similar yields, indicating differences in TOC did not have a signficant influence
on resulting cash flows. This is particualty evident for the SWS treatment, where lower yields became a more
important driving force behind overall profitability, rather than the cost savings associated with reduced water
application. Incidentally, even though differences in quality were not observed in this study, the effect of berry
quality on the financial desirability of different irrigation stratgies has previously been demonstrated by Garcia
Garcia et al. (2012). The authors noted that RDI and PRD strategies previously thought unviable (due to harsh
deficits reducing yield), became financially viable when considering the increase in berry quality associated with
these strategies, highlighting an additional benefit that needed to be included in the financial analysis. However,
interestingly in that study, the control treatment which provided 60% ET. was still considered to be the most
profitable due to higher yield. This phenonomen of yields driving profitability rather than reduced water costs has
similarily been observed in other studies investigating deficit irrigation . Though contrastingly, in this study, both
the ET and PWS treatments which provided lower water application compared with GROW produced higher yields.
This may potentially be due to improved canopy characteristics, which may constitute an additional benefit using

when these types of strategies.

Other benefits when using data driven interventions (or deficit irrigation strategies generally) may also be
associated with improved WUE and EWP. EWP which reflects the economic return on water applied, was highest
for the ET treatment (Table 3), and this is likely due to the negative correlation that was observed between EWP
and irrigation, indicating a greater economic return on water applied was achieved with reduced irrigation. This
relationship was similarly observed by Alcon et al. (2013) when comparing deficit irrigation practices in almonds
at sales prices of 3 € kg (or 3000 € t1). Trends in EWP showed a positive correlation with WUE values, and
improvements to WUE were also related to reductions in TOC (Tables 2 & 3). This association between WUE and
TOC was also observed by Bellvert et al. (2021), indicating a target of high WUE was also associated high EWP and
lower TOC in this study. The positive relationship between WUE and EWP is in contrast with Romero et al. (2016)

who when comparing different deficit irrigation strategies in Monastrell grapevine found a negative relationship
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between EWP (denoted as financial efficiency, € m-3) and WUE. In that study, a regression coefficient relating the
two parameters was not provided, so the relationship’s statistical significance cannot be fully assessed. However,
despite this, the authors noted that severe water deficits resulted in elevated WUE values, but low and negative
EWP values due to the steep reductions in yield, and consequently GM. The authors also noted a positive correlation
between EWP and irrigation, a relationship that was also observed by Garcia Garcia et al. (2012) (and opposite to
what was observed here). However, it is important to note that yields in both these studies were between 40% -
170% higher than what was obtained under the current trial, and that grape sales prices were also 12-16 fold lower,
likely leading to comparatively lower GM values than what was achieved in this study. These results would suggest
that for premium winegrapes, reduced irrigation is associated with high economic returns on water. Whereas for
winegrapes coupled with a lower grape price, deficit irrigation is not associated with these same high returns on
water, as GM is greatly reduced by any reductions in yield. However, for premium winegrape production, this effect

is buffered by high grape prices as long as yields aren’t drastically reduced.

Following trends observed for GM values, NPV was also found to be similar between all treatments, however, the
ET treatment was observed to have the highest long-term financial return. This is in contrast with Egea et al. (2017)
who when comparing irrigation scheduling strategies in a super high density olive orchard, found a plant-based
method (leaf turgor pressure measurements) to have a more positive long-term economic view than the approach
that used ET-based scheduling. However, this conclusion was made on the basis of the ET-based treatment receiving
a significantly lower NPV compared with the full irrigation treatment in that study, as both the plant-based and ET-
based treatment were found to be similar to one another, likewise to what was observed here. The observed range
IRR values (Table 4) are within the range previously reported to be common for Australian vineyards (Davidson,
2001). The sensitivity of NPV to fluctuating grape price and discount rate was likely driven by differences in yield,
as the SWS treatment was the most sensitive. The individual investment costs associated with each treatment, and
particularly the sensors themselves did not have a large impact on final NPV or IRR values, with changes in each
these parameters being largely driven by GM, which was closely associated with yield. Reasons for the high degree
of similarity between treatments may stem from the fact that the GROW treatment in this study represented
premium Cabernet Sauvignon production in a cool climate region, therefore, traditional irrigation requirements in
this vineyard were already quite low. As the thresholds used for each of the interventions were devised with the
aim of providing a further deficit on the GROW treatment, absolute differences in water application were only on
the order of 0.1 ML ha'! to 0.25 ML hal. So while reductions in water were achieved, this may have led to the high
similarities observed between treatments, notwithstanding the high soil variability also present in this region
(Longbottom et al,, 2011). Given irrigation requirements were low, the effect of increasing electricity only had a
marginal effect on farm returns. Inclusion of an additional production cost of $1000 ML!, while decreasing both
NPV and BP up to 9% and 7% respectively, also did not result in a signficiant reduction according to statistical
analysis. This is in stark contrast to vineyards in warm climate regions, where even a 50% increase in water price
(using an averaged annual allocation price of $417 averaged over each season of the trial in the southern MBD,

(Aither, 2021)) could result in a BP increase of approximately 14% under current irrigation rates (Dixon, 2021).

In light of the similarities observed between in this study, an additional matter of interest when implementing a
specific irrigation strategy is its ability to be adapted for use in precision irrigation (PI). It is widely recognised that

spatial variability (i.e. soil type and topography) can lead to differences in vine vigour, therefore, supporting the
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concept of zoned irrigation management (Bramley, 2005). In the current study, soil depth to limestone is highly
variable throughout the region (Longbottom et al, 2011), and so implementing a PI system is an attractive
alternative to the approach used in this study (which relied on weekly uniform irrigation application).
Implementing such a system would not represent a huge cost to the grower, as additional main costs to be
considered include: the cost of obtaining an NDVI map (to assess variations in vineyard vigour and delineate
irrigation zones), programmable solenoid valves to enable variable control of irrigation and an irrigation controller
to program solenoids. Each of the ET, PWS and SWS treatments in this study could be adapted for use in such a
system, particularly the PWS and SWS methods. However, an ET approach could also be used alongside sensor
driven strategies to determine how much irrigation to apply. Calculating the opportunity costs associated with
implementing a non-precision irrigation (NPI) over a PI one in the current study is difficult, however, previous
research has suggested that there is in fact an opportunity cost associated with this decision. In Temperanillo,
Cabernet Sauvignon and Syrah, Bellvert et al. (2021) compared the cost of using PI with NPI using an integrated
vine water consumption model and remote sensing approach. The authors found choosing a NPI over a Pl approach
meant forgoing cost savings of between 32 $ ha! and 77 $ hal (which was associated with irrigation water
reductions of between 1 ML ha! and 1.4 ML ha?), suggesting further water savings are a possibility when using a
PI approach. However, in relation to the current study, the vines were already minimally irrigated, so any further
water savings would likely be negligible. Though conversely, if this trial had been undertaken in a region that had

higher irrigation requirements, water savings may likely have been higher.

5. Conclusion

Following the conditions explored in this study, data driven interventions were found to have equivalent financial
returns compared with the GROW treatment, despite differences observed in water application. However, as
reduced irrigation requirements are critically important in the context of water security, each of the data driven
strategies were preferable to the GROW treatment which was associated with the highest water needs. This study
also highlighted that inclusion of a gross water price into production costs would have a negligible impact on GM
for producers in this region, however, this would not be the case in warmer regions with increased irrigation
requirements. As a result of the information gleaned from this study, the author’s recommendation would be to
carry out irrigation scheduling using data driven strategies, as this typically led to water reductions, improvements

in WUE and similar financial returns compared with GROW driven strategies.
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1 Table 1. Approximate investment and operational costs for each irrigation scheduling strategy investigated in this
2 study. Operational costs for the GROW and ET treatments were calculated on a per season basis, whereas PWS and
3 SWS operational costs were considered over a year as data subscription plans occur in 12 month cycles. Costs were
4  considered for a 15 ha vineyard considering an 18 week irrigation period.
Yearly
Initial  Lifespan
Investment concept Operational concept operational
cost($) (years) Benefits
cost ($)
Cost of wages involved Minimal equipment
Experienced Vineyard
in making decisions, requirements and
GROW | Manager and one soil 3,453 10 479
ongoing maintenance interpretation of
moisture sensor
of soil moisture probe complex data
Paso panel and labour
Ability to numerically
required to establish Cost of wages required
ET 1,172 10 440 calculate irrigation
crop factor values over to calculate ET.
needs
one season
Thermography towers Data subscription each Integrates data from the
(thermal camera, month, ongoing whole canopy with
PWS gateway, waterproof 6,000 5 annual maintenance, 580 measurements directly
outdoor boxes, pole, cost of wages to related to vine
self-installation) analyse data transpiration
Well-established
Multiple depth Data subscription each
methodology with a
capacitance probe month, ongoing
high degree of support
SWS (probes, installation 13,577 10 maintenance of soil 357
for troubleshooting
cost and irrimax moisture probe, cost of
equipment and data
software) wages to analyse data
problems
5

6 Table 2. Yield, water applied and crop water use efficiency for each irrigation treatment. Mean + SEM (n = 10 —

7 21)

GROW ET PWS SWS
Water applied 0.61+ 0.35+ 0.35+ 0.44 +
(ML ha) 0.02a 0.03¢ 0.02 ¢ 0.03b
. 6.08 + 6.41 + 6.14 + 5.09 +
Yield (tha?)
0.39 0.62 0.46 0.23




231+ 2.76 + 2.96 + 2.08 +
WUE (t ML)
0.20 0.26 0.28 0.13

8

9 One-way ANOVA and Tukey’s multiple comparison test (a = 0.05) was used to compare treatments found to be normally distributed. Data that was not found to pass
10 the D'Agostino-Pearson omnibus (K2) normality test underwent statistical testing using the Kruskal-Wallis and Dunn’s multiple comparison test (a = 0.05).
11 Significant differences between treatments are denoted by lowercase letters.
12

13 Table 3. Mean cost considerations, gross margins and economic indices calculated for a 15 ha vineyard undergoing

14  irrigation scheduling according to each of the investigated strategies. Production Vineyard operating and fixed

15 overhead costs included: chemical application, winter pruning (machine), harvesting (machine), vineyard row and

16 floor management, permanent management, general repairs and maintenance, debt servicing and general power.

Variable GROW ET PWS SWs
Vineyard operating and fixed
9,000 9,000 9,000 9,000
overhead costs ($ ha1)
Scheduling operating costs
31.9 14.7 38.7 23.8
($ha't)
Pumping cost
141 141 141 141
($ ML)
Total pumping costs
85.2a 46.6 c 491 c 619b
($ha't)
Total operational costs
9,117 a 9,063 ¢ 9,088 b 9,086 b
($hat)
Gross margin
15,201 16,578 16,515 11,188
($ha't)
Economic productivity
2,335 2,447 2,412 2,155
$t0
Economic water productivity
24,983 b 55,309 a 51,345 a 26,219 ab
($ ML)
Breakeven point
1,665 1,553 1,588 1,845
$t0

17



18

19
20
21
22
23

24
25

26

27
28
29
30
31
32
33

Table 4. The net present value (NPV) and internal rate of return (IRR) calculated for each strategy considering a
time horizon of 20 years. Scenario analysis was undertaken to evaluate figures according to a situation in which the
price of water was considered to be pumping costs, and a situation where growers would have to pay for per
megalitre (ML) water they used. Means were calculated on a per vine basis for each season and averaged according

to irrigation treatment

Pumping costs
Indicator GROW ET PWS SWS
NPV ($ ha'1) 72,343 86,676 84,834 30,201
TRR (%) 11.1 12.7 123 8.08
200000 200
—— GROW
— -
__ 150000 PWS S 1004
g — sws o
£ 100000~ S 0
> &=
o o
: 2
50000 > -100-
A B
0 T T T T -200 T T T T T
1000 2000 3000 4000 5000 -20 -10 0 10 20

Grape price ($t%) Grape price change (%)

Figure 1. Panel A represents the relationship between NPV and grape price, with the break-even grape price (when NPV equals

0) also represented along the x-axis. Panel B represents NPV % change as a function of % change in grape price.
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